935 resultados para NMR pulse sequence design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the leading nanodevice candidate, single-walled carbon nano-tubes (SWNTs) have potential therapeutic applications in gene therapy and novel drug delivery. We found that SWNTs can inhibit DNA duplex association and selectively induce human telomeric i-motif DNA formation by binding to the 5'-end major groove under physiological conditions or even at pH 8.0. SWNT binding to telomeric DNA was studied by UV melting, NMR, S1 nuclease cleavage, CD, and competitive FRET methods. These results suggest that SWNTs might have the intriguing potential to modulate human telomeric DNA structures in vivo, like biologically relevant B-A and B-Z DNA transitions, which is of great interest for drug design and cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel competition dialysis assay was used to investigate the structural selectivity of a series of substituted 2-(2-naphthyl)quinoline compounds designed to target triplex DNA. The interaction of 14 compounds with 13 different nucleic acid sequences and structures was studied. A striking selectivity for the triplex structure poly dA:[poly dT](2) was found for the majority of compounds studied. Quantitative analysis of the competition dialysis binding data using newly developed metrics revealed that these compounds are among the most selective triplex-binding agents synthesized to date. A quantitative structure-affinity relationship (QSAR) was derived using triplex binding data for all 14 compounds used in these studies. The QSAR revealed that the primary favorable determinant of triplex binding free energy is the solvent accessible surface area. Triplex binding affinity is negatively correlated with compound electron affinity and the number of hydrogen bond donors. The QSAR provides guidelines for the design of improved triplex-binding agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of chemical shift effect of substituent was applied to the assignment of the C-13 NMR spectra of the ethylene/propylene and ethylene/octene-1 copolymers. Using the parameters derived above and the DEFT technique, we then entirely assigned the C-13 NMR spectra of the ethylene/propylene/octene(-1) terpolymers synthesized in the presence of the same heterogeneous supported Ziegler-Natta catalyst, TiCl4/MgCl2/i-Bu3Al. The present paper also covers the terpolymer composition and the monomer sequence distributions of a series of ethylene/propylene/octene-1 terpolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethylene-propene copolymers (EPR) were synthesized at different feed compositions using a highly active and isospecific MgCl2-supported Ti-based catalyst. The thermal behavior of EPR was studied by differential scanning calorimetry, the heterogeneity by f

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution C-13 n.m.r. spectrum of soluble polyaniline in DMF-d7 solution was recorded. The assignment for the various resonance peaks in the spectrum was tentatively performed and the chain structure of polyaniline was analysed. It has been shown that the main chain of pristine state polyaniline is composed of alternating benzoid-quinoid and successive benzoid-quinoid sequences with the former being present in greater concentration. The sequence distribution is random. In addition to the benzoid-type and quinoid-type structures, there is a small amount of other structural units in the main chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In chain molecules of 1, 2-PBD, there are two kinds of gauche arrangements, which is the cause of making the spectrum of the secondary carbon in main chain of the polymer split. In such a complex system, the gauche arrangements of the secondary carbon and the tertiary carbon occupy an important position. Hence, the contribution of the tertiary carbon to the chemical shifts of the secondary carbon has a decisive effect on the sequence structure distribution. In comparison the contribution of vinyl groups is ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latest buzz phrase to enter the world of design research is “Design Thinking”. But is this anything new and does it really have any practical or theoretical relevance to the design world? Many sceptics believe the term has more to do with business strategy and little to do with the complex process of designing products, services and systems. Moreover, many view the term as misleading and a cheap attempt to piggyback the world of business management onto design. This paper seeks to ask is design thinking anything new? Several authors have explicitly or implicitly articulated the term “Design Thinking” before, such as Peter Rowe’s seminal book “Design Thinking” [1] first published in 1987 and Herbert Simon’s “The Sciences of the Artificial” [2] first published in 1969. In Tim Brown’s “Change by Design” [3], design thinking is thought of as a system of three overlapping spaces rather than a sequence of orderly steps namely inspiration – the problem or opportunity that motivates the search for solutions; ideation – the process of generating, developing and testing ideas; and implementation – the path that leads from the design studio, lab and factory to the market. This paper seeks to examine and critically analyse the tenets of this new design thinking manifesto set against three case studies of modern design practice. As such, the paper will compare design thinking theory with the reality of design in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.