980 resultados para N2 atmospheres
Resumo:
Mechanical degradation of tungsten alloys at extreme temperatures in vacuum and oxidation atmospheres.
Resumo:
La energía es ya un tema arquitectónico, pero su incorporación al proyecto ha sido hasta ahora fundamentalmente técnica, dando pie a una especie de funcionalismo ecológico cuyo destino es acaso repetir los errores de los viejos funcionalismos en su confianza de encontrar modos ‘objetivos’ de transmutar la energía en forma construida, pero sin que en tal proceso parezca haber hueco para mediaciones de tipo estético. Sin embargo, son precisamente tales mediaciones las que necesitan analizarse para que la adopción de los temas energéticos resulte fructífera en la arquitectura, y asimismo para dar cuenta de otras perspectivas complementarias —filosóficas, científicas, artísticas— que hoy forman el complejo campo semántico de la energía. Partiendo de la fecha de 1750 —que da comienzo simbólicamente al proceso de contaminaciones ‘modernas’ entre la arquitectura y otras disciplinas—, esta tesis analiza los diferentes modos con los que proyectos y edificios han expresado literal y analógicamente ciertos temas o ideales energéticos, demostrando la existencia de una ‘estética de la energía’ en la arquitectura y también de una tradición proyectual e intelectual sostenida en ella. Con este fin, se han seleccionados siete metáforas que vinculan tanto técnica como ideológicamente a la arquitectura con la energía: la metáfora de la máquina, asociada al ideal de movimiento y la autorregulación; las metáforas del arabesco, del cristal y del organismo, afines entre sí en su modo de dar cuenta del principio de la morfogénesis o energía creadora de la naturaleza; la metáfora de la actividad interna de los materiales; la metáfora del gradiente, que expresa la condición térmica y climática de la arquitectura, y, finalmente, la de la atmósfera que, recogiendo los sentidos anteriores, los actualiza en el contexto de la estética contemporánea. La selección de estas siete metáforas se ha llevado a cabo después de un barrido exhaustivo de la bibliografía precedente, y ha estructurado un relato cuyo método combina la perspectiva general —que permite cartografiar las continuidades históricas— con la cercana —que atiende a las problemas específicos de cada tema o metáfora—, complementándolas con una aproximación de sesgo iconográfico cuyo propósito es incidir en los vínculos que se dan entre lo ideológico y lo morfológico. El análisis ha puesto de manifiesto cómo detrás de cada una de estas metáforas se oculta un principio ideológico común —la justificación de la arquitectura desde planteamientos externos procedentes de la ciencia, la filosofía y el arte—, y cómo en cada uno de los casos estudiados las asimilaciones más fructíferas de la energía se han producido según mecanismos de mímesis analógica que inciden más en los procesos que en las formas que estos generan, y que en último término son de índole estética, lo cual constituye un indicio de los métodos de la arquitectura por venir. ABSTRACT Although it is already an architectural theme, the matter of incorporating energy into projects has up to now been mainly technical, giving rise to a kind of ecological functionalism which may be bound to old funcionalist mistakes in hopes of finding “objective” ways of transmuting energy into built forms without aesthetic considerations. However, it is precisely such considerations that need to be analyzed if the adoption of energy issues in architecture is to bear fruit and also to account for other complementary perspectives – philosophical, scientific, artistic – which today form the complex fabric of the energy semantic field. Beginning in 1750 – symbolic start of ‘modern’ contaminations between architecture and other disciplines –, this thesis analyzes the different ways in which projects and buildings have literally and analogically expressed certain subjects or ideals on energy, and demonstrates the existence of an “aesthetics of energy” in architecture, as well as of an intellectual and design tradition based on such aesthetics. For this purpose, seven metaphors are selected to link energy to architecture both technically and ideologically: the machine’s metaphor, associated with the ideal of mouvement and self-regulation; the arabesque, glass and the organism’s metaphors, which account for the morphogenesis principle, i.e. creative energy of nature; the metaphor linked to matter and the ideal of internal activity; the gradient’s metaphor, which expressed the thermal and climatic condition of architecture, and, finally, that of the atmosphere which, collecting the above meanings, updates them in the context of contemporary aesthetics. The selection of these seven metaphors was carried out after a thorough scan of the preceding literature, and has structured a reasoning that combines the overview method – which accounts for historical continuities – with the nearby one – which meets the specifics problems of each theme or metaphor –, both supplemented with an iconographic bias, the purpose of which is to visually express the links existing between the ideological and the morphological. So presented, the analysis shows how, behind each of these metaphors, lies a common ideological principle – the justification of architecture from scientific, philosophical and artistic “external” angles –, and how in each of the studied cases the most successful assimilation of energy were those produced by aesthetic mechanisms of analogical mimesis not focused in forms but in processes that generate them: an indication of the methods of architecture to come.
Resumo:
El desarrollo de sensores está ganando cada vez mayor importancia debido a la concienciación ciudadana sobre el medio ambiente haciendo que su desarrollo sea muy elevado en todas las disciplinas, entre las que cabe destacar, la medicina, la biología y la química. A pesar de la existencia de estos dispositivos, este área está aún por mejorar, ya que muchos de los materiales propuestos hasta el momento e incluso los ya comercializados muestran importantes carencias de funcionamiento, eficiencia e integrabilidad entre otros. Para la mejora de estos dispositivos, se han propuesto diversas aproximaciones basadas en nanosistemas. Quizá, uno de las más prometedoras son las nanoestructuras de punto cuántico, y en particular los semiconductores III-V basados en la consolidada tecnología de los arseniuros, las cuáles ofrecen excelentes propiedades para su uso como sensores. Además, estudios recientes demuestran su gran carácter sensitivo al medio ambiente, la posibilidad de funcionalizar la superficie para la fabricación de sensores interdisciplinares y posibilididad de mejorar notablemente su eficiencia. A lo largo de esta tesis, nos centramos en la investigación de SQD de In0.5Ga0.5As sobre substratos de GaAs(001) para el desarrollo de sensores de humedad. La tesis abarca desde el diseño, crecimiento y caracterización de las muestras hasta la el posterior procesado y caracterización de los dispositivos finales. La optimización de los parámetros de crecimiento es fundamental para conseguir una nanoestructura con las propiedades operacionales idóneas para un fin determinado. Como es bien sabido en la literatura, los parámetros de crecimiento (temperatura de crecimiento, relación de flujos del elemento del grupo V y del grupo I II (V/III), velocidad de crecimiento y tratamiento térmico después de la formación de la capa activa) afectan directamente a las propiedades estructurales, y por tanto, operacionales de los puntos cuánticos (QD). En esta tesis, se realiza un estudio de las condiciones de crecimiento para el uso de In0.5Ga0.5As SQDs como sensores. Para los parámetros relacionados con la temperatura de crecimiento de los QDs y la relación de flujos V / I I I se utilizan los estudios previamente realizados por el grupo. Mientras que este estudio se centrará en la importancia de la velocidad de crecimiento y en el tratamiento térmico justo después de la nucleación de los QDs. Para ello, se establece la temperatura de creciemiento de los QDs en 430°C y la relación de flujos V/III en 20. Como resultado, los valores más adecuados que se obtienen para la velocidad de crecimiento y el tratamiento térmico posterior a la formación de los puntos son, respectivamente, 0.07ML/s y la realización de una bajada y subida brusca de la temperatura del substrato de 100°C con respecto a la temperatura de crecimiento de los QDs. El crecimiento a una velocidad lo suficientemente alta que permita la migración de los átomos por la superficie, pero a su vez lo suficientemente baja para que se lleve a cabo la nucleación de los QDs; en combinación con el tratamiento brusco de temperatura que hace que se conserve la forma y composición de los QDs, da lugar a unos SQDs con un alto grado de homogeneidad y alta densidad superficial. Además, la caracterización posterior indica que estas nanoestructuras de gran calidad cristalina presentan unas propiedades ópticas excelentes incluso a temperatura ambiente. Una de las características por la cual los SQD de Ino.5Gao.5As se consideran candidatos prometedores para el desarrollo de sensores es el papel decisivo que juega la superficie por el mero hecho de estar en contacto directo con las partículas del ambiente y, por tanto, por ser capaces de interactuar con sus moléculas. Así pues, con el fin de demostrar la idoneidad de este sistema para dicha finalidad, se evalúa el impacto ambiental en las propiedades ópticas y eléctricas de las muestras. En un primer lugar, se analiza el efecto que tiene el medio en las propiedades ópticas. Para dicha evaluación se compara la variación de las propiedades de emisión de una capa de puntos enterrada y una superficial en distintas condiciones externas. El resultado que se obtiene es muy claro, los puntos enterrados no experimentan un cambio óptico apreciable cuando se varían las condiciones del entorno; mientras que, la emisión de los SQDs se modifica significativamente con las condiciones del medio. Por una parte, la intensidad de emisión de los puntos superficiales desaparece en condiciones de vacío y decrece notablemente en atmósferas secas de gases puros (N2, O2). Por otra parte, la fotoluminiscencia se conserva en ambientes húmedos. Adicionalmente, se observa que la anchura a media altura y la longitud de onda de emisión no se ven afectadas por los cambios en el medio, lo que indica, que las propiedades estructurales de los puntos se conservan al variar la atmósfera. Estos resultados apuntan directamente a los procesos que tienen lugar en la superficie entre estados confinados y superficiales como responsables principales de este comportamiento. Así mismo, se ha llevado a cabo un análisis más detallado de la influencia de la calidad y composición de la atmósfera en las propiedades ópticas de los puntos cuánticos superficiales. Para ello, se utilizan distintas sustancias con diferente polaridad, composición atómica y masa molecular. Como resultado se observa que las moléculas de menor polaridad y más pesadas causan una mayor variación en la intensidad de emisión. Además, se demuestra que el oxígeno juega un papel decisivo en las propiedades ópticas. En presencia de moléculas que contienen oxígeno, la intensidad de fotoluminiscencia disminuye menos que en atmósferas constituidas por especies que no contienen oxígeno. Las emisión que se observa respecto a la señal en aire es del 90% y del 77%, respectivamente, en atmósferas con presencia o ausencia de moléculas de oxígeno. El deterioro de la señal de emisión se atribuye a la presencia de defectos, enlaces insaturados y, en general, estados localizados en la superficie. Estos estados actúan como centros de recombinación no radiativa y, consecuentemente, se produce un empeoramiento de las propiedades ópticas de los SQDs. Por tanto, la eliminación o reducción de la densidad de estos estados superficiales haría posible una mejora de la intensidad de emisión. De estos experimentos de fotoluminiscencia, se deduce que las interacciones entre las moléculas presentes en la atmósfera y la superficie de la muestra modifican la superficie. Esta alteración superficial se traduce en un cambio significativo en las propiedades de emisión. Este comportamiento se atribuye a la posible adsorción de moléculas sobre la superficie pasivando los centros no radiativos, y como consecuencia, mejorando las propiedades ópticas. Además, los resultados demuestran que las moléculas que contienen oxígeno con mayor polaridad y más ligeras son adsorbidas con mayor facilidad, lo que hace que la intensidad óptica sufra variaciones despreciables con respecto a la emisión en aire. Con el fin de desarrollar sensores, las muestras se procesan y los dispositivos se caracterizan eléctricamente. El procesado consiste en dos contactos cuadrados de una aleación de Ti/Au. Durante el procesado, lo más importante a tener en cuenta es no realizar ningún ataque o limpieza que pueda dañar la superficie y deteriorar las propiedades de las nanostructuras. En este apartado, se realiza un análisis completo de una serie de tres muestras: GaAs (bulk), un pozo cuántico superficial (SQW) de Ino.5Gao.5As y SQDs de Ino.5Gao.5As. Para ello, a cada una de las muestras se le realizan medidas de I-V en distintas condiciones ambientales. En primer lugar, siguiendo los resultados obtenidos ópticamente, se lleva a cabo una comparación de la respuesta eléctrica en vacío y aire. A pesar de que todas las muestras presentan un carácter más resistivo en vacío que en aire, se observa una mayor influencia sobre la muestra de SQD. En vacío, la resistencia de los SQDs decrece un 99% respecto de su valor en aire, mientras que la variación de la muestras de GaAs e Ino.5Gao.5As SQW muestran una reducción, respectivamente, del 31% y del 20%. En segundo lugar, se realiza una evaluación aproximada del posible efecto de la humedad en la resistencia superficial de las muestras mediante la exhalación humana. Como resultado se obtiene, que tras la exhalación, la resistencia disminuye bruscamente y recupera su valor inicial cuando dicho proceso concluye. Este resultado preliminar indica que la humedad es un factor crítico en las propiedades eléctricas de los puntos cuánticos superficiales. Para la determinación del papel de la humedad en la respuesta eléctrica, se somete a las muestras de SQD y SQW a ambientes con humedad relativa (RH, de la siglas del inglés) controlada y se analiza el efecto sobre la conductividad superficial. Tras la variación de la RH desde 0% hasta el 70%, se observa que la muestra SQW no cambia su comportamiento eléctrico al variar la humedad del ambiente. Sin embargo, la respuesta de la muestra SQD define dos regiones bien diferenciadas, una de alta sensibilidad para valores por debajo del 50% de RH, en la que la resistencia disminuye hasta en un orden de magnitud y otra, de baja sensibilidad (>50%), donde el cambio de la resistencia es menor. Este resultado resalta la especial relevancia no sólo de la composición sino también de la morfología de la nanostructura superficial en el carácter sensitivo de la muestra. Por último, se analiza la influencia de la iluminación en la sensibilidad de la muestra. Nuevamente, se somete a las muestras SQD y SQW a una irradiación de luz de distinta energía y potencia a la vez que se varía controladamente la humedad ambiental. Una vez más, se observa que la muestra SQW no presenta ninguna variación apreciable con las alteraciones del entorno. Su resistencia superficial permanece prácticamente inalterable tanto al modificar la potencia de la luz incidente como al variar la energía de la irradiación. Por el contrario, en la muestra de SQD se obtiene una reducción la resistencia superficial de un orden de magnitud al pasar de condiciones de oscuridad a iluminación. Con respecto a la potencia y energía de la luz incidente, se observa que a pesar de que la muestra no experimenta variaciones notables con la potencia de la irradiación, esta sufre cambios significativos con la energía de la luz incidente. Cuando se ilumina con energías por encima de la energía de la banda prohibida (gap) del GaAs (Eg ~1.42 eV ) se produce una reducción de la resistencia de un orden de magnitud en atmósferas húmedas, mientras que en atmósferas secas la conductividad superficial permanece prácticamente constante. Sin embargo, al inicidir con luz de energía menor que Eg, el efecto que se produce en la respuesta eléctrica es despreciable. Esto se atribuye principalmente a la densidad de portadores fotoactivados durante la irradiación. El volumen de portadores excita dos depende de la energía de la luz incidente. De este modo, cuando la luz que incide tiene energía menor que el gap, el volumen de portadores generados es pequeño y no contribuye a la conductividad superficial. Por el contrario, cuando la energía de la luz incidente es alta (Eg), el volumen de portadores activados es elevado y éstos contribuyen significantemente a la conductividad superficial. La combinación de ambos agentes, luz y humedad, favorece el proceso de adsorción de moléculas y, por tanto, contribuye a la reducción de la densidad de estados superficiales, dando lugar a una modificación de la estructura electrónica y consecuentemente favoreciendo o dificultando el transporte de portadores. ABSTRACT Uncapped three-dimensional (3D) nanostructures have been generally grown to assess their structural quality. However, the tremendous growing importance of the impact of the environment on life has become such nanosystems in very promising candidates for the development of sensing devices. Their direct exposure to changes in the local surrounding may influence their physical properties being a perfect sign of the atmosphere quality. The goal of this thesis is the research of Ino.5Gao.5As surface quantum dots (SQDs) on GaAs(001), covering from their growth to device fabrication, for sensing applications. The achievement of this goal relies on the design, growth and sample characterization, along with device fabrication and characterization. The first issue of the thesis is devoted to analyze the main growth parameters affecting the physical properties of the Ino.5Gao.5As SQDs. It is well known that the growing conditions (growth temperature , deposition rate, V/III flux ratio and treatment after active layer growth) directly affect the physical properties of the epilayer. In this part, taking advantage of the previous results in the group regarding Ino.5Gao.5As QD growth temperature and V/III ratio, the effect of the growth rate and the temperature treatment after QDs growth nucleation is evaluated. Setting the QDs growth temperature at 430°C and the V/III flux ratio to ~20, it is found that the most appropriate conditions rely on growing the QDs at 0.07ML/s and just after QD nucleation, rapidly dropping and again raising 100°C the substrate temperature with respect to the temperature of QD growth. The combination of growing at a fast enough growth rate to promote molecule migration but sufficiently slow to allow QD nucleation, together with the sharp variation of the temperature preserving their shape and composition yield to high density, homogeneous Ino.5Gao.5As SQDs. Besides, it is also demonstrated that this high quality SQDs show excellent optical properties even at room temperature (RT). One of the characteristics by which In0.5Ga0.5As/GaAs SQDs are considered promising candidates for sensing applications is the crucial role that surface plays when interacting with the gases constituting the atmosphere. Therefore, in an attempt to develop sensing devices, the influence of the environment on the physical properties of the samples is evaluated. By comparing the resulting photoluminescence (PL) of SQDs with buried QDs (BQDs), it is found that BQDs do not exhibit any significant variation when changing the environmental conditions whereas, the external conditions greatly act on the SQDs optical properties. On one hand, it is evidenced that PL intensity of SQDs sharply quenches under vacuum and clearly decreases under dry-pure gases atmospheres (N2, O2). On the other hand, it is shown that, in water containing atmospheres, the SQDs PL intensity is maintained with respect to that in air. Moreover, it is found that neither the full width at half maximun nor the emission wavelength manifest any noticeable change indicating that the QDs are not structurally altered by the external atmosphere. These results decisively point to the processes taking place at the surface such as coupling between confined and surface states, to be responsible of this extraordinary behavior. A further analysis of the impact of the atmosphere composition on the optical characteristics is conducted. A sample containing one uncapped In0.5Ga0.5As QDs layer is exposed to different environments. Several solvents presenting different polarity, atomic composition and molecular mass, are used to change the atmosphere composition. It is revealed that low polarity and heavy molecules cause a greater variation on the PL intensity. Besides, oxygen is demonstrated to play a decisive role on the PL response. Results indicate that in presence of oxygen-containing molecules, the PL intensity experiments a less reduction than that suffered in presence of nonoxygen-containing molecules, 90% compared to 77% signal respect to the emission in air. In agreement with these results, it is demonstrated that high polarity and lighter molecules containing oxygen are more easily adsorbed, and consequently, PL intensity is less affected. The presence of defects, unsaturated bonds and in general localized states in the surface are proposed to act as nonradiative recombination centers deteriorating the PL emission of the sample. Therefore, suppression or reduction of the density of such states may lead to an increase or, at least, conservation of the PL signal. This research denotes that the interaction between sample surface and molecules in the atmosphere modifies the surface characteristics altering thus the optical properties. This is attributed to the likely adsoption of some molecules onto the surface passivating the nonradiative recombination centers, and consequently, not deteriorating the PL emission. Aiming for sensors development, samples are processed and electrically characterized under different external conditions. Samples are processed with two square (Ti/Au) contacts. During the processing, especial attention must be paid to the surface treatment. Any process that may damage the surface such as plasma etching or annealing must be avoided to preserve the features of the surface nanostructures. A set of three samples: a GaAs (bulk), In0.5Ga0.5As SQDs and In0.5Ga0.5As surface quantum well (SQW) are subjected to a throughout evaluation. I-V characteristics are measured following the results from the optical characterization. Firstly, the three samples are exposed to vacuum and air. Despite the three samples exhibit a more resistive character in vacuum than in air, it is revealed a much more clear influence of the pressure atmosphere in the SQDs sample. The sheet resistance (Rsh) of SQDs decreases a 99% from its response value under vacuum to its value in air, whereas Rsh of GaAs and In0.5Ga0.5As SQW reduces its value a 31% and a 20%, respectively. Secondly, a rough analysis of the effect of the human breath on the electrical response evidences the enormous influence of moisture (human breath is composed by several components but the one that overwhelms all the rest is the high concentration of water vapor) on the I-V characteristics. Following this result, In0.5Ga0.5As SQDs and In0.5Ga0.5As SQW are subjected to different controlled relative humidity (RH) environments (from 0% to 70%) and electrically characterized. It is found that SQW shows a nearly negligible Rsh variation when increasing the RH in the surroundings. However, the response of SQDs to changes in the RH defines two regions. Below 50%, high sensitive zone, Rsh of SQD decreases by more than one order of magnitude, while above 50% the dependence of Rsh on the RH becomes weaker. These results remark the role of the surface and denote the existence of a finite number of surface states. Nevertheless, most significantly, they highlight the importance not only of the material but also of the morphology. Finally, the impact of the illumination is determined by means of irradiating the In0.5Ga0.5As SQDs and In0.5Ga0.5As SQW samples with different energy and power sources. Once again, SQW does not exhibit any correlation between the surface conductivity and the external conditions. Rsh remains nearly unalterable independently of the energy and power of the incident light. Conversely, Rsh of SQD experiences a decay of one order of magnitude from dark-to-photo conditions. This is attributed to the less density of surface states of SQW compared to that of SQDs. Additionally, a different response of Rsh of SQD with the energy of the impinging light is found. Illuminating with high energy light results in a Rsh reduction of one order of mag nitude under humid atmospheres, whereas it remains nearly unchanged under dry environments. On the contrary, light with energy below the bulk energy bandgap (Eg), shows a negligible effect on the electrical properties regardless the local moisture. This is related to the density of photocarriers generated while lighting up. Illuminating with excitation energy below Eg affects a small absorption volume and thus, a low density of photocarriers may be activated leading to an insignificant contribution to the conductivity. Nonetheless, irradiating with energy above the Eg can excite a high density of photocarriers and greatly improve the surface conductivity. These results demonstrate that both illumination and humidity are therefore needed for sensing. The combination of these two agents improves the surface passivation by means of molecule adsorption reducing the density of surface states, thus modifying the electronic structures, and consequently, promoting the carrier motion.
Resumo:
The application of a recently developed model of sonic anemometers measuring process has revealed that these sensors cannot be considered as absolute ones when measuring spectral characteristics of turbulent wind speed since it is demonstrated that the ratios of measured to real spectral density functions depend on the composition and temperature of the considered planetary atmosphere. The new model of the measuring process of sonic anemometers is applied to describe the measuring characteristics of these sensors as fluid/flow dependent (against the traditional hypothesis of fluid/flow independence) and hence dependent on the considered planetary atmosphere. The influence of fluid and flow characteristics (quantified via the Mach number of the flow) and the influence of the design parameters of sonic anemometers (mainly represented by time delay between pulses shots and geometry) on turbulence measurement are quantified for the atmospheres of Mars, Jupiter, and Earth. Important differences between the behavior of these sensors for the same averaged wind speed in the three considered atmospheres are detected in terms of characteristics of turbulence measurement as well as in terms of optimum values of anemometer design parameters for application on the different considered planetary atmospheres. These differences cannot be detected by traditional models of sonic anemometer measuring process based on line averaging along the sonic acoustic paths.
Resumo:
The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron–sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron–sulfur cluster N2 to quinone.
Resumo:
Formaldehyde is produced in most living systems and is present in the environment. Evidence that formaldehyde causes cancer in experimental animals infers that it may be a carcinogenic hazard to humans. Formaldehyde reacts with the exocyclic amino group of deoxyguanosine, resulting in the formation of N2-methyl-2′-deoxyguanosine (N2-Me-dG) via reduction of the Schiff base. The same reaction is likely to occur in living cells, because cells contain endogenous reductants such as ascorbic acid and gluthathione. To explore the miscoding properties of formaldehyde-derived DNA adducts a site-specifically modified oligodeoxynucleotide containing a N2-Me-dG was prepared and used as the template in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer extension reaction was slightly stalled one base before the N2-Me-dG lesion, but DNA synthesis past this lesion was readily completed. The fully extended products were analyzed to quantify the miscoding specificities of N2-Me-dG. Preferential incorporation of dCMP, the correct base, opposite the lesion was observed, along with small amounts of misincorporation of dTMP (9.4%). No deletions were detected. Steady-state kinetic studies indicated that the frequency of nucleotide insertion for dTMP was only 1.2 times lower than for dCMP and the frequency of chain extension from the 3′-terminus of a dT:N2-Me-dG pair was only 2.1 times lower than from a dC:N2-Me-dG pair. We conclude that N2-Me-dG is a miscoding lesion capable of generating G→A transition mutations.
Resumo:
Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems.
Resumo:
The symbiotic pattern of expression of Rhizobium meliloti N2-fixation genes is tightly coupled with the histological organization of the alfalfa root nodule and thus is under developmental control. N2-fixation gene expression is induced very sharply at a particular zone of the nodule called interzone II-III that precedes the zone where N2 fixation takes place. We show here that this coupling can be disrupted, hereby resulting in ectopic expression of N2-fixation genes in the prefixing zone II of the nodule. Uncoupling was obtained either by using a R. meliloti strain in which a mutation rendered N2-fixation gene expression constitutive with respect to oxygen in free-living bacterial cultures or by placing nodules induced by a wild-type R. meliloti strain in a microoxic environment. These results implicate oxygen as a key determinant of the symbiotic pattern of N2-fixation gene expression.
Resumo:
A cana-de-açúcar é uma cultura agrícola de grande importância econômica para o Brasil, e a expansão de seu cultivo para solos marginais requer uma maior utilização de fertilizantes à base de nitrogênio (N). Na maioria dos países produtores, a adubação nitrogenada se baseia em altas doses de aplicação, enquanto, no Brasil, o seu uso é relativamente baixo devido, em parte, ao processo de fixação biológica de nitrogênio (FBN) pela ação de bactérias diazotróficas. Além da FBN, as plantas adquirem fontes de N, como amônio e nitrato, por meio de transportadores de membranas localizados nas raízes. Há evidências que a associação com microrganismos pode favorecer as plantas por meio da regulação dos genes de transportadores de N. Desta forma, este trabalho teve como objetivo caracterizar o transporte de amônio e nitrato, avaliando a expressão gênica dos principais transportadores de N em cana-de-açúcar cultivada in vitro sob o efeito da associação com bactérias diazotróficas. Também foi descrita a comunidade bacteriana de plântulas in vitro, bem como o efeito da fertilização com N e da inoculação com bactérias diazotróficas em plantas maduras. Plântulas de \'SP70- 1143\' e \'Chunee\', que contrastam para FBN, foram empregadas em ensaios in vitro sob diversas concentrações e fontes de N em associação ou não com uma estirpe de Gluconacetobacter diazotrophicus ou um mistura de bactérias diazotróficas (G. diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans, Azospirillum amazonense e Burkholderia tropica). A caracterização do transporte de N por meio de ensaios de absorção de nitrato e amônio marcados (15N) revelou que a interação entre cana-de-açúcar x G. diazotrophicus induziu a expressão do gene do transportador de nitrato ScNRT2.1, o que levou a uma tendência no aumento no influxo de nitrato, assim como dos genes de transportadores de amônio ScAMT1.1 e ScAMT1.3, resultando em maiores influxos de amônio apenas para a cultivar \'SP70- 1143\'. Já a associação da cana-de-açúcar com a mistura de bactérias diazotróficas revelou que somente houve indução transcricional de ScAMT1.1, o que resultou na maior absorção de amônio em \'SP70-1143\'. Por sua vez, quando analisada a interação in vitro por 30 dias, a presença da bactéria, apesar de transiente, possivelmente favoreceu a expressão dos genes de transportadores de nitrato ScNRT1.1 e ScNRT2.1, e do transportador de amônio ScAMT1.1, resultando no maior acúmulo de 15N-nitrato de amônio nas plantas de \'SP70-1143\'. Foi detectada uma comunidade bacteriana associada a plântulas micropropagadas, a qual é distinta entre os genótipos \'SP70-1143\' e \'Chunee\' e se altera com a inoculação com G. diazotrophicus. Para as plantas cultivadas em campo, a comunidade bacteriana existente foi alterada pela fertilização de N, mas não pela inoculação com diazotróficas. Portanto, a inoculação com bactérias diazotróficas parece induzir a expressão dos principais genes transportadores de amônio e nitrato em plântulas do genótipo \'SP70-1143\' resultando na maior absorção de fontes inorgânicas de N.
Resumo:
A new non-porous carbon material from granular olive stones has been prepared to be used as a reference material for the characterization of the pore structure of activated carbons. The high precision adsorption isotherms of nitrogen at 77.4 K and argon at 87.3 K on the newly developed sample have been measured, providing the standard data for a more accurate comparative analysis to characterize disordered porous carbons using comparative methods such as t- and αS-methods.
Resumo:
A series of carbide-derived carbons (CDC) have been prepared starting from TiC and using different chlorine treatment temperatures (500–1200 °C). Contrary to N2 adsorption measurements at −196 °C, CO2 adsorption measurements at room temperature and high pressure (up to 1 MPa) together with immersion calorimetry measurements into dichloromethane suggest that the synthesized CDC exhibit a similar porous structure, in terms of narrow pore volume, independently of the temperature of the reactive extraction treatment used (samples synthesized below 1000 °C). Apparently, these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under standard conditions (0 °C and atmospheric pressure) is kinetically restricted. The same accounts for a slightly larger molecule as N2 at a lower adsorption temperature (−196 °C), i.e. textural parameters obtained from N2 adsorption measurements on CDC must be underestimated. Furthermore, here we show experimentally that nitrogen exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas streams.
High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration
Resumo:
Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.
Resumo:
The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.