985 resultados para N-terminal sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

After vascular injury, a cascade of serine protease activations leads to the conversion of the soluble fibrinogen molecule into fibrin. The fibrin monomers then polymerize spontaneously and noncovalently to form a fibrin gel. The primary interaction of this polymerization reaction is between the newly exposed N-terminal Gly-Pro-Arg sequence of the α chain of one fibrin molecule and the C-terminal region of a γ chain of an adjacent fibrin(ogen) molecule. In this report, the polymerization pocket has been identified by determining the crystal structure of a 30-kDa C-terminal fragment of the fibrin(ogen) γ chain complexed with the peptide Gly-Pro-Arg-Pro. This peptide mimics the N terminus of the α chain of fibrin. The conformational change in the protein upon binding the peptide is subtle, with electrostatic interactions primarily mediating the association. This is consistent with biophysical experiments carried out over the last 50 years on this fundamental polymerization reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In plants, the biosynthesis of isopentenyl diphosphate, the central precursor of all isoprenoids, proceeds via two separate pathways. The cytosolic compartment harbors the mevalonate pathway, whereas the newly discovered deoxyxylulose 5-phosphate pathway, which also operates in certain eubacteria, including Escherichia coli, is localized to plastids. Only the first two steps of the plastidial pathway, which involve the condensation of pyruvate and glyceraldehyde 3-phosphate to deoxyxylulose 5-phosphate followed by intramolecular rearrangement and reduction to 2-C-methylerythritol 4-phosphate, have been established. Here we report the cloning from peppermint (Mentha × piperita) and E. coli, and expression, of a kinase that catalyzes the phosphorylation of isopentenyl monophosphate as the last step of this biosynthetic sequence to isopentenyl diphosphate. The plant gene defines an ORF of 1,218 bp that, when the proposed plastidial targeting sequence is excluded, corresponds to ≈308 aa with a mature size of ≈33 kDa. The E. coli gene (ychB), which is located at 27.2 min of the chromosomal map, consists of 852 nt, encoding a deduced enzyme of 283 aa with a size of 31 kDa. These enzymes represent a conserved class of the GHMP family of kinases, which includes galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase, with homologues in plants and several eubacteria. Besides the preferred substrate isopentenyl monophosphate, the recombinant peppermint and E. coli kinases also phosphorylate isopentenol, and, much less efficiently, dimethylallyl alcohol, but dimethylallyl monophosphate does not serve as a substrate. Incubation of secretory cells isolated from peppermint glandular trichomes with isopentenyl monophosphate resulted in the rapid production of monoterpenes and sesquiterpenes, confirming that isopentenyl monophosphate is the physiologically relevant, terminal intermediate of the deoxyxylulose 5-phosphate pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chromosomal DNA of the bacteria Streptomyces ambofaciens DSM40697 is an 8-Mb linear molecule that ends in terminal inverted repeats (TIRs) of 210 kb. The sequences of the TIRs are highly variable between the different linear replicons of Streptomyces (plasmids or chromosomes). Two spontaneous mutant strains harboring TIRs of 480 and 850 kb were isolated. The TIR polymorphism seen is a result of the deletion of one chromosomal end and its replacement by 480 or 850 kb of sequence identical to the end of the undeleted chromosomal arm. Analysis of the wild-type sequences involved in these rearrangements revealed that a recombination event took place between the two copies of a duplicated DNA sequence. Each copy was mapped to one chromosomal arm, outside of the TIR, and encoded a putative alternative sigma factor. The two ORFs, designated hasR and hasL, were found to be 99% similar at the nucleotide level. The sequence of the chimeric regions generated by the recombination showed that the chromosomal structure of the mutant strains resulted from homologous recombination events between the two copies. We suggest that this mechanism of chromosomal arm replacement contributes to the rapid evolutionary diversification of the sequences of the TIR in Streptomyces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cysteine mutagenesis and site-directed spin labeling in the C-terminal region of rhodopsin have been used to probe the local structure and proximity of that region to the cytoplasmic loops. Each of the native amino acids in the sequence T335–T340 was replaced with Cys, one at a time. The sulfhydryl groups of all mutants reacted rapidly with the sulfhydryl reagent 4,4′-dithiodipyridine, which indicated a high degree of solvent accessibility. Furthermore, to probe the proximity relationships, a series of double Cys mutants was constructed. One Cys in all sets was at position 338 and the other was at a position in the sequence S240–V250 in the EF interhelical loop, at position 65 in the AB interhelical loop, or at position 140 in the CD interhelical loop. In the dark state, no significant disulfide formation was observed between C338 and C65 or C140 under the conditions used, whereas a relatively rapid disulfide formation was observed between C338 and C242 or C245. Spin labels in the double Cys mutants showed the strongest magnetic interactions between the nitroxides attached to C338 and C245 or C246. Light activation of the double mutant T242C/S338C resulted in slower disulfide formation, whereas interactions between nitroxides at C338 and C245 or C246 decreased. These results suggest the proximity of the C-terminal residue C338 to residues located on the outer face of a cytoplasmic helical extension of the F helix with an apparent increase of distance upon photoactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the essential components of a phosphatase that specifically dephosphorylates the Saccharomyces cerevisiae RNA polymerase II (RPII) large subunit C-terminal domain (CTD) is a novel polypeptide encoded by an essential gene termed FCP1. The Fcp1 protein is localized to the nucleus, and it binds the largest subunit of the yeast general transcription factor IIF (Tfg1). In vitro, transcription factor IIF stimulates phosphatase activity in the presence of Fcp1 and a second complementing fraction. Two distinct regions of Fcp1 are capable of binding to Tfg1, but the C-terminal Tfg1 binding domain is dispensable for activity in vivo and in vitro. Sequence comparison reveals that residues 173–357 of Fcp1 correspond to an amino acid motif present in proteins of unknown function predicted in many organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane α-helix of SREBP, allowing the remainder of the α-helix to unwind partially to expose the peptide bond for cleavage by S2P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G+C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52–288). The structure resolved to 2.8 Å is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 Å apart. A 26-aa α-helix, α6, links the C-terminal domain to the catalytic core. A kink in one of the two α6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein–DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52–210), independently determined at 1.6-Å resolution, is identical to the core domain within the two-domain 52–288 structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meiotic lamin C2 is the only A-type lamin expressed during mammalian spermatogenesis. Typical for this short lamin is the unique hexapeptide GNAEGR, which substitutes the nonhelical amino terminus and part of the α-helical rod domain present in somatic lamins. Meiotic lamin C2 also lacks a carboxyl-terminal CaaX box, which is modified by isoprenylation and involved in nuclear envelope (NE) association of somatic isoforms. The mechanism by which lamin C2 becomes localized in the NE is totally unknown. Here we demonstrate that the hexapeptide GNAEGR is essential for this process: (i) Its deletion resulted in a diffuse distribution of lamin C2 within nuclei of transfected COS-7 cells; (ii) Mutated somatic lamin C, containing the sequence GNAEGR at its amino terminus, was located at the NE. The mass spectrometric analysis of the amino terminus of lamin C2 revealed that it is modified by myristoylation. Correspondingly, the substitution of the first glycine residue abolishes the NE association of lamin C2. We conclude that NE association of lamin C2 is achieved by a mechanism different from that of somatic lamins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA binding activity of p53 is crucial for its tumor suppressor function and is subject to tight regulation. Previous studies revealed that the inhibitory function of the p53 C terminus is implicated in the latent, low affinity sequence-specific DNA binding activity of p53 in the uninduced state. Sequence-specific DNA binding of p53 has been shown to be activated by several posttranslational modifications and interacting proteins that target predominantly the C terminus. Moreover, several authors have shown that synthetic peptides corresponding to p53 C-terminal sequences activate p53 sequence-specific DNA binding. In an effort to identify the interaction site of p53 with these activating peptides we assessed complex formation between p53 deletion constructs and C-terminal activating peptides by peptide affinity precipitation. This study revealed that two distal regions of the p53 molecule contribute synergistically to the interaction with activating C-terminal peptides: amino acids 80–93 and 364–393. The C-terminal residues 364–393 are already well characterized as having negative regulatory function. DNA binding analyses with these deletion constructs reveal a comparable negative regulatory activity for residues 80–93, defining this region as a previously unidentified negative regulatory domain of p53. Furthermore, synthetic peptides spanning this newly identified proline-rich negative regulatory region (residues 80–93) are able to activate p53 sequence-specific DNA binding in vitro. We suggest that both negative regulatory regions, residues 80–93 and 364–393, contribute cooperatively to the maintenance of the latent, low-affinity DNA binding conformation of p53.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionarily-conserved DNA-binding protein RBP-J directly interacts with the RAM domain and the ankyrin (ANK) repeats of the Notch intracellular region (RAMIC), and activates transcription of downstream target genes that regulate cell differentiation. In vitro binding assays demonstrate that the truncated N- and C-terminal regions of RBP-J bind to the ANK repeats but not to the RAM domain. Using an OT11 mouse cell line, in which the RBP-J locus is disrupted, we showed that RBP-J constructs mutated in the N- and C-terminal regions were defective in their transcriptional activation induced by either RAMIC or IC (the Notch intracellular region without the RAM domain) although they had normal levels of binding activity to DNA and the RAM domain. The studies using chimeric molecules between RBP-J and its homolog RBP-L showed that the N- and C-terminal regions of RBP-J conferred the IC- as well as RAMIC-induced transactivation potential on RBP-L, which binds to the same DNA sequence as RBP-J but fails to interact with RAMIC. Taken together, these results indicate that the interactions between the N- and C-terminal regions of RBP-J and the ANK repeats of RAMIC are important for transactivation of RBP-J by RAMIC.