977 resultados para Myosin Heavy-chain
Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes
Resumo:
Aims Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. Methods and results NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO(2)) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 mu M). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. Conclusion Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Resumo:
It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)
Resumo:
Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, Gorjao R, Leite AR, Anhe GF, Bordin S. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol 300: R92-R100, 2011. First published November 10, 2010; doi:10.1152/ajpregu.00169.2010.-Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in beta-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2 alpha phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in beta-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in beta-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.
Resumo:
Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.
Resumo:
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aiming to evaluate the puerperal influence on the proteinogram of Saanen goats, 108 samples of blood serum from 12 goats were collected, and the results were presented at nine times: just after parturition, 1, 3, 5, 7, 10, 15, 21 and 30 days after parturition. Total amount of serum proteins were determined by the biuret technique, and the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to the protein fractionation. In this last method, 17 protein bands were observed, from which molecular weights varied between 25 KDa and 275 KDa. In addition, it was possible to identify the following protein fractions: immunoglobulin A (180 KDa), ceruloplasmin (115 KDa), transferrin (79 KDa), albumin (65 KDa), heavy-chain immunoglobulin G (58 KDa), haptoglobin (45 KDa), acid glycoprotein (37 KDa) and light-chain immunoglobulin G (28 KDa). Another 9 nonidentified protein fractions presented, each molecular weights equal to 275 KDa, 140 KDa, 125 KDa, 103 KDa, 95 KDa, 41 KDa, 35 KDa, 30 Kda and 25 KDa. The results allow us to conclude that by the first week of puerperium, an improvement of acid glycoprotein occurs, whereas those others protein fractions do not suffer any puerperal influence.
Resumo:
Heart failure (NF) is frequently associated with euthyroid sicksyndrome (low T-3 and elevated rT(3)). We investigated if altered thyroid hormone in HF could affect expression of the TH receptor (TR alpha 1), and alpha and beta myosin heavy chains (alpha-MHC beta-MHC). HF was provoked in rats by aortic stenosis. We showed that rT(3) generated front liver and kidney deiodination significantly increased and T-3 decreased in HE; there was significantly higher TR alpha 1 expression, no alpha-MHC expression, but beta-MHC expression. Changes in TR alpha 1 could be compensating for low T-3 from HF.
Resumo:
This study aimed to evaluate the influence of lactation phases on the proteinogram of whey protein in Santa Inês ewes. Ewes were accompanied in a semi-intensive system using the same sanitary and nutritional management evaluated at 15, 30, 60 and 90 days postpartum (end of weaning and lactation). Clinical examination of the mammary gland was carried out through and bacteriological culture. The screening of the material resulted in 44 milk samples of healthy glands concurrent negative by CMT and bacteriological culture exam. For obtaining the whey protein renin solution was used. The whey was fractionated into aliquots and kept in the -80C freezer to later separation of protein fractions. For determination of total protein of whey protein was employed the biuret, observing the linearity of the test. Separation of protein fractions was performed, using polyacrylamide gel containing sodium dodecyl sulfate (SDS-PAGE). Eigth protein were observed including lactoferrin, serum albumin, IgA, IgG (heavy chain IgG (IgG CP), light chain IgG (IgG CL), ß-lactoglobulin, a-lactalbumin and proteins identified as PM 15000 and PM 29000. No significant difference was observed at different stages of lactation in the following protein: IgA (P>0.3895), lactoferrin (P>0.1611), PM 29000 (P>0.4879), α-lactalbumin (P>0.0799) and PM15000 (P>0.4494). In total protein (P<0.0022), albumin protein (P<0.0377) and IgG (P<0.0354) it was observed a significant variation in the first moments of observations, in the ß-lactoglobulin protein (P<0.0005) there was significant variation with reduction of 15 to 30 days postpartum with progressive elevation until the last stage of lactation (90 days postpartum). The SDS-PAGE technique allowed the quantification of eigth whey proteins in health ewes. The protein fractions identified reflect the profile of whey to ovine species, with influence of stages of lactation in albumin, IgG and ß-lactoglobulin.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)