842 resultados para Murray Darling Basin
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring chronologies, developed from cores from Pinyon pines growing on climatically sensitive sites in the north-central Great Basin, have been used to reconstruct precipitation and drought histories of the area from A.D. 1600 to 1982. Analysis of these hydrologic time series helps to place current climatic conditions into the perspective of the past 383 years (since 1600). ... The years 1934 and 1959 were the first and fourth driest while 1934 had the lowest July Palmer Drought Severity Index (PDSI) of the reconstructed records. Nevertheless, the decade of the 1930's is only the seventh driest since 1600; the decade 1953-1962 ranks as the second driest. The driest non-overlapping decade since 1600 was 1856-1865. Interestingly, the second wettest decade was 1932-1941. An examination of 30-year mean precipitation data shows that the driest 30-year period was 1871-1900; 1931-1960 ranks as the fourth driest. The current 30-year period (1951-1980) ranks twelfth.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1983 El Nino resulted in a decrease in the flux of diatoms and planktonic foraminiferans into the Santa Barbara basin. These may both be related to the decrease in productivity and therefore standing crops of these two groups.
Resumo:
Linear regression models are constructed to predict seasonal runoff by fitting streamflow to temperature, precipitation, and snow water content across a range of elevations. The models are quite successful in capturing the differences in discharge between different elevation watersheds and their interannual variations. This exercise thus provides insight into seasonal changes in streamflow at different elevation watersheds that might occur under a changed climate.
Resumo:
The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.
Resumo:
Ths report addresses the following two questions: 1) What are the loads (flux) of nutrients transported from the Mississippi-Atchafalaya River Basin to the Gulf of Mexico, and where do they come from within the basin? 2) What is the relative importance of specific human activities, such as agriculture, point-source discharges, and atmospheric deposition in contributing to these loads? These questions were addressed by first estimating the flux of nutrients from the Mississippi-Atchafalaya River Basin and about 50 interior basins in the Mississippi River system using measured historical streamflow and water quality data. Annual nutrient inputs and outputs to each basin were estimated using data from the National Agricultural Statistics Service, National Atmospheric Deposition Program, and point-source data provided by the USEPA. Next, a nitrogen mass balance was developed using agricultural statistics, estimates of nutrient cycling in agricultural systems, and a geographic information system. Finally, multiple regression models were developed to estimate the relative contributions of the major input sources to the flux of nitrogen and phosphorus to the Gulf of Mexico.
Resumo:
Dating of annually varved sediments of Santa Barbara Basin down to AD 1650 in absence of precise radiometric methods was achieved by (1) counting varves and determining mean annual sedimentation rates from x-radiographs, and (2) correlation with historical rainfall and tree-ring records.
Resumo:
A 1844-1987 time-series of carbon stable isotope ratios from dated sedimentary total organic carbon from the center of the Santa Barbara basin is compared with historical climate and oceanographic records. Carbon derived from carbon-13-depleted phytoplankton and carbon-13-enriched kelp appear responsible for a large part of the isotopic variance in sedimentary total organic carbon. El Niño/Southern Oscillation events are recorded by the isotopic response of marine organic carbon in sediments.
Resumo:
Sediments in Santa Barbara Basin contain microfossil and sedimentological information that allows reconstruction of major features of the California Current such as water temperature, strength of upwelling, and productivity. ... Until now, investigations of Santa Barbara Basin sediments have utilized analytical techniques that could not resolve seasonal laminae, permitting annual resolution of variations in sediment composition and structure only. ... Based on a successful technique for preparation of epoxy-embedded and highly polished thin-sections that permit economical optical and electron microscope evaluation of laminated sequences, it is our long-term goal to reconstruct, with unprecedented detail, the history of sedimentation processes in the Santa Barbara Basin by developing ultra-high-resolution time series of biotic and detrital proxies.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.