979 resultados para Multivariate generalized t -distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two contrasting multivariate statistical methods, viz., principal components analysis (PCA) and cluster analysis were applied to the study of neuropathological variations between cases of Alzheimer's disease (AD). To compare the two methods, 78 cases of AD were analyzed, each characterised by measurements of 47 neuropathological variables. Both methods of analysis revealed significant variations between AD cases. These variations were related primarily to differences in the distribution and abundance of senile plaques (SP) and neurofibrillary tangles (NFT) in the brain. Cluster analysis classified the majority of AD cases into five groups which could represent subtypes of AD. However, PCA suggested that variation between cases was more continuous with no distinct subtypes. Hence, PCA may be a more appropriate method than cluster analysis in the study of neuropathological variations between AD cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Евелина Илиева Велева - Разпределението на Уишарт се среща в практиката като разпределението на извадъчната ковариационна матрица за наблюдения над многомерно нормално разпределение. Изведени са някои маргинални плътности, получени чрез интегриране на плътността на Уишарт разпределението. Доказани са необходими и достатъчни условия за положителна определеност на една матрица, които дават нужните граници за интегрирането.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 62F35; Secondary 62P99

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A class of priority systems with non-zero switching times, referred as generalized priority systems, is considered. Analytical results regarding the distribution of busy periods, queue lengths and various auxiliary characteristics are presented. These results can be viewed as generalizations of the Kendall functional equation and the Pollaczek-Khintchin transform equation, respectively. Numerical algorithms for systems’ busy periods and traffic coefficients are developed. ACM Computing Classification System (1998): 60K25.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 46F30, 46F10

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to examine medical illness and anxiety, depressive, and somatic symptoms in older medical patients with generalized anxiety disorder (GAD). METHOD: A case-control study was designed and conducted in the University of California, San Diego (UCSD) Geriatrics Clinics. A total of fifty-four older medical patients with GAD and 54 matched controls participated. MEASUREMENTS: The measurements used for this study include: Brief Symptom Inventory-18, Mini International Neuropsychiatric Interview, and the Anxiety Disorders Interview Schedule. RESULTS: Older medical patients with GAD reported higher levels of somatic symptoms, anxiety, and depression than other older adults, as well as higher rates of diabetes and gastrointestinal conditions. In a multivariate model that included somatic symptoms, medical conditions, and depressive and anxiety symptoms, anxiety symptoms were the only significant predictors of GAD. CONCLUSION: These results suggest first, that older medical patients with GAD do not primarily express distress as somatic symptoms; second, that anxiety symptoms in geriatric patients should not be discounted as a byproduct of medical illness or depression; and third, that older adults with diabetes and gastrointestinal conditions may benefit from screening for anxiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and fragmentation have been implicated as driving forces behind recent waves of extinction. The regional landscape where this study occurred is a mosaic of forest and grassland, and therefore provides an ideal system with which to investigate the implications of habitat patchiness for the distribution and ecology of organisms. Here I describe patterns of amphibian and reptile distribution among and within habitats at the study site, investigate associations between habitat and community structure, describe nested subset patterns on forest islands, and quantify the relationship between body size and density across ecological scales and taxonomic groups. ^ Species richness did not vary across habitats, between forest island isolation classes or between island edges and cores. In contrast, species composition varied at all three ecological scales, reflecting differences in the distribution of both forest and open-habitat affiliated species. Species composition was associated with multivariate habitat profiles, with differences occurring along the isolation gradient of forest islands rather than the area gradient. The relationship between species composition and habitat was stronger for amphibians than for reptiles, a pattern that may be ascribed to physiological differences between the two groups. Analysis of nested subset pattern of community structure indicated that species composition of islands is nested as a function of isolation. Four species whose distribution on forest islands seems to be dispersal-limited drive the relationship between nestedness and isolation. Although there were several examples of shifts in body size across spatial scales and taxonomic groups, body size was not associated with density as predicted by theory, which may reflect differences between real and habitat islands, or differential responses of poikilothermic vertebrates to changes in density relative to homeotherms. ^ Taken together, the strongest result to emerge from this research is the importance of isolation, rather than area, on community structure in this system. Much evidence suggested that different ecological groups of species show distinct patterns of distribution both within and among habitat types. This suggests that species distributions at this site are not the result of 'neutral' processes at the community level, but rather reflect fundamental differences in the ecology of component species. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors would like to thank the College of Life Sciences of Aberdeen University and Marine Scotland Science which funded CP's PhD project. Skate tagging experiments were undertaken as part of Scottish Government project SP004. We thank Ian Burrett for help in catching the fish and the other fishermen and anglers who returned tags. We thank José Manuel Gonzalez-Irusta for extracting and making available the environmental layers used as environmental covariates in the environmental suitability modelling procedure. We also thank Jason Matthiopoulos for insightful suggestions on habitat utilization metrics as well as Stephen C.F. Palmer, and three anonymous reviewers for useful suggestions to improve the clarity and quality of the manuscript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.

For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.

Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.

Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.

In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.

For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.

Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.