951 resultados para Multiple-Time Scale Problem
Resumo:
Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
Significant quantities of antibiotics are used in all parts of the globe to treat diseases with bacterial origins. After ingestion, antibiotics are excreted by the patient and transmitted in due course to the aquatic environment. This study examined temporal fluctuations (monthly time scale) in antibiotic sources (ambulatory sales and data from a hospital dispensary) for Lausanne, Switzerland. Source variability (i.e., antibiotic consumption, monthly data for 2006-2010) were examined in detail for nine antibiotics--azithromycin, ciprofloxacin, clarithromycin, clindamycin, metronidazole, norfloxacin, ofloxacin, sulfamethoxazole and trimethoprim, from which two main conclusions were reached. First, some substances--azithromycin, clarithromycin, ciprofloxacin--displayed high seasonality in their consumption, with the winter peak being up to three times higher than the summer minimum. This seasonality in consumption resulted in seasonality in Predicted Environmental Concentrations (PECs). In addition, the seasonality in PECs was also influenced by that in the base wastewater flow. Second, the contribution of hospitals to the total load of antibiotics reaching the Lausanne Wastewater Treatment Plant (WTP) fluctuated markedly on a monthly time scale, but with no seasonal pattern detected. That is, there was no connection between fluctuations in ambulatory and hospital consumption for the substances investigated.
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).
Resumo:
La meva incorporació al grup de recerca del Prof. McCammon (University of California San Diego) en qualitat d’investigador post doctoral amb una beca Beatriu de Pinós, va tenir lloc el passat 1 de desembre de 2010; on vaig dur a terme les meves tasques de recerca fins al darrer 1 d’abril de 2012. El Prof. McCammon és un referent mundial en l’aplicació de simulacions de dinàmica molecular (MD) en sistemes biològics d’interès humà. La contribució més important del Prof. McCammon en la simulació de sistemes biològics és el desenvolupament del mètode de dinàmiques moleculars accelerades (AMD). Les simulacions MD convencionals, les quals estan limitades a l’escala de temps del nanosegon (~10-9s), no son adients per l’estudi de sistemes biològics rellevants a escales de temps mes llargues (μs, ms...). AMD permet explorar fenòmens moleculars poc freqüents però que son clau per l’enteniment de molts sistemes biològics; fenòmens que no podrien ser observats d’un altre manera. Durant la meva estada a la “University of California San Diego”, vaig treballar en diferent aplicacions de les simulacions AMD, incloent fotoquímica i disseny de fàrmacs per ordinador. Concretament, primer vaig desenvolupar amb èxit una combinació dels mètodes AMD i simulacions Car-Parrinello per millorar l’exploració de camins de desactivació (interseccions còniques) en reaccions químiques fotoactivades. En segon lloc, vaig aplicar tècniques estadístiques (Replica Exchange) amb AMD en la descripció d’interaccions proteïna-lligand. Finalment, vaig dur a terme un estudi de disseny de fàrmacs per ordinador en la proteïna-G Rho (involucrada en el desenvolupament de càncer humà) combinant anàlisis estructurals i simulacions AMD. Els projectes en els quals he participat han estat publicats (o estan encara en procés de revisió) en diferents revistes científiques, i han estat presentats en diferents congressos internacionals. La memòria inclosa a continuació conté més detalls de cada projecte esmentat.
Resumo:
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Resumo:
In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.
Resumo:
Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.
Resumo:
We study the effects of nominal debt on the optimal sequential choice of monetary policy. When the stock of debt is nominal, the incentive to generate unanticipated inflation increases the cost of the outstanding debt even if no unanticipated inflation episodes occur in equilibrium. Without full commitment, the optimal sequential policy is to deplete the outstanding stock of debt progressively until these extra costs disappear. Nominal debt is therefore a burden on monetary policy, not only because it must be serviced, but also because it creates a time inconsistency problem that distorts interest rates. The introduction of alternative forms of taxation may lessen this burden, if there is enough commtiment to fiscal policy. If there is full commitment to an optimal fiscal policy, then the resulting monetary policy is the Friedman rule of zero nominal interest rates.
Resumo:
In this paper we present an algorithm to assign proctors toexams. This NP-hard problem is related to the generalized assignmentproblem with multiple objectives. The problem consists of assigningteaching assistants to proctor final exams at a university. We formulatethis problem as a multiobjective integer program (IP) with a preferencefunction and a workload-fairness function. We then consider also a weightedobjective that combines both functions. We develop a scatter searchprocedure and compare its outcome with solutions found by solving theIP model with CPLEX 6.5. Our test problems are real instances from aUniversity in Spain.
Resumo:
We study the effects of nominal debt on the optimal sequential choice of monetary policy. When the stock of debt is nominal, the incentive to generate unanticipated inflation increases the cost of the outstanding debt even if no unanticipated inflation episodes occur in equilibrium. Without full commitment, the optimal sequential policy is to deplete the outstanding stock of debt progressively until these extra costs disappear. Nominal debt is therefore a burden on monetary policy, not only because it must be serviced, but also because it creates a time inconsistency problem that distorts interest rates. The introduction of alternative forms of taxation may lessen this burden, if there is enough commtiment to fiscal policy. If there is full commitment to an optimal fiscal policy, then the resulting monetary policy is the Friedman rule of zero nominal interest rates.
Resumo:
Jurassic volcanic formations interlayered with (ammonite-bearing) sediments are common in the Caucasus area; this situation is of interest for the numerical calibration of the poorly documented Jurassic portion of the time scale. However, following petrographic study on thin sections no whole-rocks can be considered reliable geochronometers due to subsequent alteration; from about 20 samples, two were selected for plagioclase dating; one (V134) is probably early Kimmeridgian in age; the other (V136) is probably located in the Lower Bathonian stage according to diagnostic ammonites. Cathodoluminescence (CTL) study has shown that sample V136 was similar to usual volcanic feldspars (blue to green colour); however, the lack of CTL of the V134 plagioclase is a character common to diagenetic feldspars; consequently, in spite of a good optical preservation, this geo-chronometer cannot give an age representative of the time of emplacement of the lava flow. We have combined CTL observation with microprobe analysis in order to document the poorly known CTL behaviour of volcanic feldspars; cations Ti4+ and Fe2+ play a major role in the CTL colour of plagioclases and are able to document the growing history of these feldspars ; phenocrysts are initially rich in Fe2+ (core of the crystals, green in colour), then richer in Ti toward the exterior; microcrysts are even richer in Ti (blue to bright blue). We have also observed that natural CTL colour was modified resulting from acid ``cleaning'' of the separated feldspars : the initial blue or green colour tends to change to yellow or violet, respectively, after acid treatment probably due to oxydation of Fe2+ toward Fe3+. X-ray and microprobe analyses both indicated that plagioclases from sample V134 was near the sodic end member (albite) suggesting a diagenetic origin in this andesitic basalt; In contrast, sample V136 contains a calcic plagioclase of common composition for a doleritic basalt. The K-Ar conventional technique was applied as a preliminary tool for radiometric analysis. The Kimmeridgian Na-plagioclase sample gave a ``rejuvenated'' (85 Ma) apparent age which confirms a late genesis for the separated plagioclase phase; this interpretation is based on CTL observation, X-ray analysis, and microprobe analysis ; these techniques are able to distinguish samples which have been submitted to diagenetic alteration from those which have not. An age consistent with the stratigraphic location has been obtained from sample V136. This age of 161 +/- 3 (2-sigma) Ma, is the first one available from a sample palaeontologically located with reasonable precision within the mid Jurassic time.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.
Resumo:
The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.
Resumo:
A detailed magnetostratigraphic study has been carried out in the early to middle Miocene distal alluvial and lacustrine sediments of the Montes de Castejón (central Ebro Basin). The study was based on the analysis of 196 magnetostratigraphic sites sampled along a stratigraphic interval of about 240 meters. Local magnetostratigraphy yielded a sequence of 12 magnetozones (6 normal and 6 reverse) which could be correlated with the Geomagnetic Polarity Time Scale (GPTS) interval C5Cr to C5AD (between 17 and 14.3 Ma.). The sampled sedimentary sequences include the boundary between two tectosedimentary units (TSU, T5 and T6) already defined in the Ebro Basin. The magnetostratigraphy of the Montes de Castejón allows to date the T5/T6 TSU boundary at 16.14 Ma, within chron C5Cn.1n. This magnetostratigraphy also allows us to analyse in detail as well as to discuss the variations in sedimentation rates through space and time between different lacustrine environments: Outer carbonate lacustrine fringes and distal alluvial plains (Montes de Castejón sections) show higher sedimentation rates than offshore lacustrine areas (San Caprasio section, 50 km east of Montes de Castejón).
Resumo:
In studies of the natural history of HIV-1 infection, the time scale of primary interest is the time since infection. Unfortunately, this time is very often unknown for HIV infection and using the follow-up time instead of the time since infection is likely to provide biased results because of onset confounding. Laboratory markers such as the CD4 T-cell count carry important information concerning disease progression and can be used to predict the unknown date of infection. Previous work on this topic has made use of only one CD4 measurement or based the imputation on incident patients only. However, because of considerable intrinsic variability in CD4 levels and because incident cases are different from prevalent cases, back calculation based on only one CD4 determination per person or on characteristics of the incident sub-cohort may provide unreliable results. Therefore, we propose a methodology based on the repeated individual CD4 T-cells marker measurements that use both incident and prevalent cases to impute the unknown date of infection. Our approach uses joint modelling of the time since infection, the CD4 time path and the drop-out process. This methodology has been applied to estimate the CD4 slope and impute the unknown date of infection in HIV patients from the Swiss HIV Cohort Study. A procedure based on the comparison of different slope estimates is proposed to assess the goodness of fit of the imputation. Results of simulation studies indicated that the imputation procedure worked well, despite the intrinsic high volatility of the CD4 marker.