967 resultados para Multilevel Systems Model
Resumo:
A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
The emerging Cyber-Physical Systems (CPSs) are envisioned to integrate computation, communication and control with the physical world. Therefore, CPS requires close interactions between the cyber and physical worlds both in time and space. These interactions are usually governed by events, which occur in the physical world and should autonomously be reflected in the cyber-world, and actions, which are taken by the CPS as a result of detection of events and certain decision mechanisms. Both event detection and action decision operations should be performed accurately and timely to guarantee temporal and spatial correctness. This calls for a flexible architecture and task representation framework to analyze CP operations. In this paper, we explore the temporal and spatial properties of events, define a novel CPS architecture, and develop a layered spatiotemporal event model for CPS. The event is represented as a function of attribute-based, temporal, and spatial event conditions. Moreover, logical operators are used to combine different types of event conditions to capture composite events. To the best of our knowledge, this is the first event model that captures the heterogeneous characteristics of CPS for formal temporal and spatial analysis.
Resumo:
The ability to utilize information systems (IS) effectively is becoming a necessity for business professionals. However, individuals differ in their abilities to use IS effectively, with some achieving exceptional performance in IS use and others being unable to do so. Therefore, developing a set of skills and attributes to achieve IS user competency, or the ability to realize the fullest potential and the greatest performance from IS use, is important. Various constructs have been identified in the literature to describe IS users with regard to their intentions to use IS and their frequency of IS usage, but studies to describe the relevant characteristics associated with highly competent IS users, or those who have achieved IS user competency, are lacking. This research develops a model of IS user competency by using the Repertory Grid Technique to identify a broad set of characteristics of highly competent IS users. A qualitative analysis was carried out to identify categories and sub-categories of these characteristics. Then, based on the findings, a subset of the model of IS user competency focusing on the IS-specific factors – domain knowledge of and skills in IS, willingness to try and to explore IS, and perception of IS value – was developed and validated using the survey approach. The survey findings suggest that all three factors are relevant and important to IS user competency, with willingness to try and to explore IS being the most significant factor. This research generates a rich set of factors explaining IS user competency, such as perception of IS value. The results not only highlight characteristics that can be fostered in IS users to improve their performance with IS use, but also present research opportunities for IS training and potential hiring criteria for IS users in organizations.
Enhancement of Nematic Order and Global Phase Diagram of a Lattice Model for Coupled Nematic Systems
Resumo:
We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The fractioning of lemon essential oil can be performed by liquid-liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, gamma-terpinene, beta-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pulchellin is a Ribosome Inactivating Protein containing an A-chain (PAC), whose toxic activity requires crossing the endoplasmic reticulum (ER) membrane. In this paper, we investigate the interaction between recombinant PAC (rPAC) and Langmuir monolayers of dipalmitoyl phosphatidyl glycerol (DPPG), which served as membrane model. Three catalytically active, truncated PACs with increasing deletion of the C-terminal region, possessing 244,239 and 236 residues (rPAC(244), rPAC(239) and rPAC(236)), were studied. rPAC had the strongest interaction with the DPPG monolayer, inducing a large expansion in its surface pressure-area isotherm. The affinity to DPPG decreased with increased deletion of the C-terminal region. When the C-terminal region was deleted completely (rPAC(236)), the interaction was recovered, probably because other hydrophobic regions were exposed to the membrane. Using Polarization Modulated-Infrared Reflection Absorption Spectroscopy (PM-IRRAS) we observed that at a bare air/water interface rPAC comprised mainly alpha-helix structures, the C-terminal region had unordered structures when interacting with DPPG. For rPAC(236) the alpha-helices were preserved even in the presence of DPPG. These results confirm the importance of the C-terminal region for PAC-ER membrane interaction. The partial unfolding only with preserved C-terminal appears a key step for the protein to reach the cytosol and develop its toxic activity. (C) 2011 Elsevier B.V. All rights reserved.