915 resultados para Multienzyme Complexes -- antagonists
Resumo:
Sawhorse-type diruthenium tetracarbonyl complexes incorporating carboxyphenyl porphyrin bridges and pyridine axial ligands have been prepared, characterized and evaluated as potential photosensitizing and chemotherapeutic agents in several human cancer cells (A2780, A549, Me300, HeLa). The mono carboxyphenyl porphyrin derivatives, 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin (HOOCR1-H2) and 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin-Zn (HOOCR1-Zn), after reaction with Ru-3(CO)(12) and pyridine, give the dinuclear complexes [Ru-2(CO)(4)(OOCR1-H2)(2)(NC5H5)(2)] (1) and [Ru-2(CO)(4)-(OOCR1-Zn)(2)(NC5H5)(2)] (2), respectively. Under the same reaction conditions, the di-carboxyphenyl porphyrin derivatives, 5,10-di(4-carboxyphenyl)-15,20-diphenyl-21,23H-porphyrin (HOOCR2-H2COOH) and 5,10-di(4-carboxyphenyl)-15,20-diphenylporphyrin-Zn (HOOCR2-ZnCOOH), give rise to the tetranuclear complexes, [{Ru-2(CO)(4)(NC5H5)(2)}(2)(OOCR2-H2COO)(2)] (3) and [{Ru-2(CO)(4)(NC5H5)(2! )}(2)(OOCR2-ZnCOO)(2)] (4), in which two sawhorse diruthenium tetracarbonyl units are linked by the di-carboxyphenyl porphyrin ligands. When tested in human cancer cell lines, both Zn(II) metallo-porphyrin derivatives 2 and 4 and the tetranuclear derivative 3 show some degree of cytotoxicity in the dark, but seem to present no phototoxicity upon irradiation at 652 nm. These results demonstrate the effect of the Zn(II) ion insertion into the porphyrin core, resulting in increased cytotoxicity and decreased phototoxicity. On the other hand, complex 1, the less cytotoxic derivative with IC50 > 170 mu M in HeLa cervix and A2780 ovarian cancer cell lines, shows an excellent phototoxicity toward these cancer cell lines with LD50 comprised between 4.5 and 7.5 J/cm(2) (irradiance 30 mW/cm(2)) at 5 mu M concentration (incubation time: 24 h). Overall, an excellent ratio between photo-and cytotoxicity has been found for the metal-free porphyrin derivative [Ru-2(CO)(4)(OOCR1-H2)(2)(! NC5H5)(2)] (1).
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important α-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary
Resumo:
RÉSUMÉ Les plaques de Peyer (PP) représentent le site d'entrée majeur des pathogènes au niveau des muqueuses intestinales. Après avoir traversé la cellule M, l'antigène est pris en charge par les cellules dendritiques (DC) de la région sub-épithéliale du dôme des PP. Ces dernières activent une réponse immunitaire qui conduit à la production de l'IgA de sécrétion (SIgA), l'anticorps majeur au niveau muqueux. Des études précédentes dans notre laboratoire ont démontré qu'après administration de SIgA dans des anses intestinales de souris, les SIgA se lient spécifiquement aux cellules M, entrent dans les PP, et sont éventuellement internalisées par les DC. Le but de ce travail est de comprendre la relevance biologique de l'entrée des SIgA dans les PP et leur relevance physiologique dans l'homéostasie mucosale. Dans un premier temps, nous avons montré en utilisant une méthode de purification optimisée basée sur une isolation magnétique, que, en plus des DC myéloïdes (CD11c+/CD11b+) et des DC lymphoïdes (CD11c+/CD8+), les PP de souris contiennent un nouveau sous-type de DC exprimant les marqueurs CD11c et CD19. L'utilisation de la microscopie confocale nous a permis de démontrer que les DC myéloïdes internalisent des SIgA, contrairement aux DC lymphoïdes qui n'interagissent pas avec les SIgA, alors que le nouveau sous-type de DC exprimant CD19 lie les SIgA. En plus, nous avons démontré qu'aucune des DC de rate, de ganglion bronchique ou de ganglion inguinal interagit avec les SIgA. Dans le but d'explorer si les SIgA peuvent délivrer des antigènes aux DC des PP in vivo, nous avons administré des complexes immunitaires formés de Shigella flexneri complexées à des SIgA, dans des anses intestinales de souris. Nous avons observé une entrée dans les PP, suivie d'une migration vers les ganglions mésentériques drainants, contrairement aux Shigella flexneri seules, qui n'infectent pas la souris par la voie intestinale. Shigella flexneri délivrée par SIgA n'induit pas de destruction tissulaire au niveau de l'intestin. En plus de l'exclusion immunitaire, ces résultats suggèrent un nouveau rôle des SIgA, qui consiste à transporter des antigènes à l'intérieur des PP dans un contexte non-inflammatoire. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC L'intestin a pour rôle principal d'absorber les nutriments digérés tout au long du tube digestif, et de les faire passer dans le compartiment intérieur sanguin. Du fait de son exposition chronique avec un monde extérieur constitué d'aliments et de bactéries, l'intestin est un endroit susceptible aux infections et a donc besoin d'empêcher l'entrée de microbes. Pour cela, l'intestin est tapissé de "casernes" appelées les plaques de Peyer, qui appartiennent à un système de défense appelé système immunitaire muqueux. Les plaques de Peyer sont composées de différents types de cellules, ayant pour rôle de contrôler l'entrée de microbes et de développer une réaction immunitaire lors d'infection. Cette réaction immunitaire contre les microbes (antigènes) débute par la prise en charge de l'antigène par des sentinelles, les cellules dendritiques. L'antigène est préparé de façon à être reconnu par d'autres cellules appelées lymphocytes T capables d'activer d'autres cellules, les lymphocytes B. La réaction immunitaire résulte dans la production par les lymphocytes B d'un anticorps spécifique appelé IgA de sécrétion (SIgA) au niveau de la lumière intestinale. De manière classique, le rôle de SIgA au niveau de la lumière intestinale consiste à enrober les microbes et donc exclure leur entrée dans le compartiment intérieur. Dans ce travail, nous avons découvert une nouvelle fonction des SIgA qui consiste à introduire des antigènes dans les plaques de Peyer, et de les diriger vers les cellules dendritiques. Sachant que les SIgA sont des anticorps qui ne déclenchent pas de réactions de défense violentes dites inflammatoires, l'entrée des antigènes via SIgA serait en faveur d'une défense intestinale maîtrisée sans qu'il y ait d'inflammation délétère. Ces résultats nous laissent supposer que l'entrée d'antigènes via SIgA pourrait conduire le système immunitaire muqueux à reconnaître ces antigènes de manière appropriée. Ce mécanisme pourrait expliquer les désordres immunitaires de types allergiques et maladies auto-immunitaires que l'on rencontre chez certaines personnes déficientes en IgA, chez qui cette lecture d'antigènes de manière correcte serait inadéquate. ABSTRACT Peyer's patches (PP) represent the primary site for uptake and presentation of ingested antigens in the intestine. Antigens are sampled by M cells, which pass them to underlying antigen-presenting cells including dendritic cells (DC). This leads to the induction of mucosal T cell response that is important for the production of secretory IgA (SIgA), the chief antibody at mucosal surfaces. Previous studies in the laboratory have shown that exogenous SIgA administrated into mouse intestinal loop binds specifically to M cells, enter into PP, and is eventually internalized by DC. The aim of this work is to understand the biological significance of the SIgA uptake by PP DC and its physiological relevance for mucosal homeostasis. As a first step, we have shown by using an optimized MACS method that, in addition to the CD11c+/CD11b+ (myeloid DC) and CD11c+/CD8+ (lymphoid DC) subtypes, mouse PP contain a novel DC subtype exhibiting both CD11c and CD19 markers. By using a combination of MACS isolation and confocal microscopy, we have demonstrated that in contrast to the lymphoid DC which do not interact with SIgA, the myeloid DC internalize SIgA, while the CD19+ subtype binds SIgA on its surface. Neither spleen DC, nor bronchial-lymph node DC, nor inguinal lymph node DC exhibit such a binding specificity. To test whether SIgA could deliver antigens to PP DC in vivo, we administered SIgA-Shigella flexneri immune complexes into mouse intestinal loop containing a PP. We found that (i) SIgA-Shigella flexneri immune complexes enter the PP and are internalized by sub-epithelial dome PP DC, in contrast to Shigella flexneri alone that does not penetrate the intestinal epithelia in mice, (ii) immune complexes migrate to the draining mesenteric lymph node, (iii) Shigella flexneri carried via SIgA do not induce intestinal tissue destruction. Our results suggest that in addition to immune exclusion, SIgA transports antigens back to the PP under non-inflammatory conditions.
Resumo:
PURPOSE: Our purpose was to develop a well-defined medium for the in vitro maturation (IVM) of immature bovine cumulus-oocyte complexes (COC). METHODS: The COC were cultured in the presence of three protein supplementations: fetal bovine serum (FBS), bovine serum albumin, and Synthetic Serum Substitute. The embryos obtained after in vitro fertilization of IVM oocytes were cocultured with Vero cells and their development to the morula and blastocyst stages was studied. RESULTS: When FBS was absent from the IVM medium, a significantly lower fertilization rate was observed, followed by a decrease in the percentage of embryos reaching the blastocyst stage. When FBS was replaced by a defined protein supplementation, the best results were obtained with Synthetic Serum Substitute. CONCLUSIONS: Adequate protein supplementation of the IVM medium optimizes the fertilization rate and the development of bovine IVM oocytes. The implication of these results in the human field is discussed.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
The interaction of the T cell antigen receptor with a photoreactive antigenic peptide derivative bound covalently to the H-2Kd (Kd) molecule was studied by photoaffinity labeling on cloned, CD8 positive cytotoxic T lymphocytes. The Kd-restricted Plasmodium berghei circumsporozoite peptide 253-260 (YIPS-AEKI) was conjugated with iodo-4-azidosalicylic acid at the N terminus and with 4-azidobenzoic acid at the T cell receptor residue Lys-259. Cell-associated or soluble Kd molecules were photoaffinity-labeled with the peptide derivative by selective photoactivation of the N-terminal photoreactive group. Incubation of cell-associated or soluble covalent Kd-peptide derivative complexes (ligands) with cytotoxic T lymphocytes that recognized this peptide derivative and activation of the orthogonal photoreactive group resulted in specific photoaffinity labeling of the T cell receptor. The labeling was inhibitable by an anti-Kd antibody and was absent on Kd-restricted cytotoxic T lymphocytes of different specificity. The binding of the soluble ligand reached a maximum after 2-4 min at 37 degrees C, after 30 min at 18 degrees C, and after 3 h at 4 degrees C. In contrast, binding of the cell-associated ligand reached a transient maxima after 50 and 110 min at 37 and 18 degrees C, respectively. The degree of binding at 37 degrees C was approximately 30% lower than that at 18 degrees C. No binding took place at 4 degrees C. Inhibition studies with antibodies and drugs indicated that the binding of the cell-associated, but not the soluble ligand, was highly dependent on T cell-target cell conjugate formation, whereas the binding of the soluble ligand was greatly dependent on CD8.
Resumo:
The purpose of this study was to design microspheres combining sustained delivery and enhanced intracellular penetration for ocular administration of antisense oligonucleotides. Nanosized complexes of antisense TGF-beta2 phosphorothioate oligonucleotides (PS-ODN) with polyethylenimine (PEI), and naked PS-ODN were encapsulated into poly(lactide-co-glycolide) microspheres prepared by the double-emulsion solvent evaporation method. The PS-ODN was introduced either naked or complexed in the inner aqueous phase of the first emulsion. We observed a marked influence of microsphere composition on porosity, size distribution and PS-ODN encapsulation efficiency. Mainly, the presence of PEI induced the formation of large pores observed onto microsphere surface. Introduction of NaCl in the outer aqueous phase increased the encapsulation efficiency and reduced microsphere porosity. In vitro release kinetic of PS-ODN was also investigated. Clearly, the higher the porosity, the faster was the release and the higher was the burst effect. Using an analytical solution of Fick's second law of diffusion, it was shown that the early phase of PS-ODN and PS-ODN-PEI complex release was primarily controlled by pure diffusion, irrespectively of the type of microsphere. Finally, microspheres containing antisense TGF-beta2 nanosized complexes were shown, after subconjunctival administration to rabbit, to significantly increase intracellular penetration of ODN in conjunctival cells and subsequently to improve bleb survival in a rabbit experimental model of filtering surgery. These results open up interesting prospective for the local controlled delivery of genetic material into the eye.
Resumo:
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4-4-COO-C6H4-4-O-(CH2)9-CH3 or L2 = NC5H4-4-COO-(CH2)10-O-C6H4-4-COO-C6H4-4-C6H4-4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR)
Resumo:
Idiopathic premature ventricular complexes originating from the ventricular outflow tract: evaluation, prognosis and management The prognosis of ventricular premature complexes (VPC) in the absence of heart disease is considered benign. VPC usually originate from the right or, less commonly, left ventricular outflow tract. QRS complexes therefore usually assume a left bundle branch block and inferior axis morphology. These VPC, particularly if very frequent (> 20,000 per day), may adversely affect left ventricular function and their suppression can restore normal function. Moreover, there is a clinical overlap with arrhythmogenic right ventricular dysplasia and this diagnosis should be considered when facing a left bundle branch block shaped VPC. However, the prognosis of outflow tract VPC is good for appropriately selected patients with normal left ventricular function, absence of syncope or ventricular tachycardia, and no evidence of cardiac disease.
Resumo:
Fungal infections represent a serious threat, particularly in immunocompromised patients. Interleukin-1beta (IL-1beta) is a key pro-inflammatory factor in innate antifungal immunity. The mechanism by which the mammalian immune system regulates IL-1beta production after fungal recognition is unclear. Two signals are generally required for IL-1beta production: an NF-kappaB-dependent signal that induces the synthesis of pro-IL-1beta (p35), and a second signal that triggers proteolytic pro-IL-1beta processing to produce bioactive IL-1beta (p17) via Caspase-1-containing multiprotein complexes called inflammasomes. Here we demonstrate that the tyrosine kinase Syk, operating downstream of several immunoreceptor tyrosine-based activation motif (ITAM)-coupled fungal pattern recognition receptors, controls both pro-IL-1beta synthesis and inflammasome activation after cell stimulation with Candida albicans. Whereas Syk signalling for pro-IL-1beta synthesis selectively uses the Card9 pathway, inflammasome activation by the fungus involves reactive oxygen species production and potassium efflux. Genetic deletion or pharmalogical inhibition of Syk selectively abrogated inflammasome activation by C. albicans but not by inflammasome activators such as Salmonella typhimurium or the bacterial toxin nigericin. Nlrp3 (also known as NALP3) was identified as the critical NOD-like receptor family member that transduces the fungal recognition signal to the inflammasome adaptor Asc (Pycard) for Caspase-1 (Casp1) activation and pro-IL-1beta processing. Consistent with an essential role for Nlrp3 inflammasomes in antifungal immunity, we show that Nlrp3-deficient mice are hypersusceptible to Candida albicans infection. Thus, our results demonstrate the molecular basis for IL-1beta production after fungal infection and identify a crucial function for the Nlrp3 inflammasome in mammalian host defence in vivo.
Resumo:
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru-3(CO)(12)) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru-2(CO)(4)((2)-(2)-O2CC3F7)(2)(L)(2) (1a, L=C5H5N; 1b, L=PTA; 1c, L=PPh3) and Ru-2(CO)(4)((2)-(2)-O2CC11F23)(2)(L)(2) (2a, L=C5H5N; 2b, L=PTA; 2c, L=PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru-2(CO)(4)((2)-(2)-O2CC3H7)(2)(PPh3)(2) (3) and Ru-2(CO)(4)((2)-(2)-O2CC11H23)(2)(PPh3)(2) (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.
Resumo:
Summary : A lot of information can be obtained on proteins when proteomics methods are used. In our study, we aimed to characterize complexes containing pro-apoptotic proteins by different proteomics methods and finally focused on PIDD (p53-induced protein with a death domain), for which the most interesting results were obtained. PIDD has been shown to function as a molecular switch between genotoxic stress-induced apoptotis and genotoxic stress-induced cell survival through NF-κB activation. To exert these two functions, PIDD forms alternate complexes respectively with caspase2 and CRADD on one hand and RIP 1 and NEMO on the other hand. The first part of our study focuses on the processing of PIDD. PIDD full length (FL) is constitutively cleaved into three fragments, an N-terminal one (PIDD-N) and two fragments containing the C-terminus (PIDD-C and PIDD-CC). Localization of the two PIDD cleavage sites by mass spectrometry (MS) allowed to understand that PIDD is probably not cleaved by proteases but is subject to protein (self-)splicing and also to map the PIDD-N, PIDD-C and PIDD-CC fragments exactly. Further characterization of these three fragments by Tinel et al. (Tinel et al., 2007) showed that PIDD-C is involved in activation of an apoptotic pathway while PIDD-CC is involved in NF-κB activation. We also found that PIDD is subject to proline-directed phosphorylation at two serine residues in PIDD-N, the regulatory fragment of PIDD. The second part of the study aimed at identifying by proteomics techniques proteins that co-purify with PIDD and therefore are putative cellular interaction partners. In this respect we analyzed samples obtained in different conditions or with different PIDD constructs corresponding to processed fragments. This allowed us to identify a large number of potential interactors for PIDD. For example, by comparing data obtained from PIDD-C and PIDD-FL affinity purifications, we found that the Hsp90 chaperone system interacts strongly with PIDD-N. In the third part of this study, we developed methods to selectively and rapidly quantify by MS proteins of interest in PIDD affinity purifications or negative controls. Using these tools we detected significant changes in PIDD-FL-copurifying proteins treated by heat shock. Overall, our studies provide informative data on the processing of PIDD and its possible involvement in several molecular pathways.