958 resultados para Multi-ion Counting System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I tested the hypothesis that high pCO2 (76.6 Pa and 87.2 Pa vs. 42.9 Pa) has no effect on the metabolism of juvenile massive Porites spp. after 11 days at 28 °C and 545 µmol quanta/m**2/s. The response was assessed as aerobic dark respiration, skeletal weight (i.e., calcification), biomass, and chlorophyll fluorescence. Corals were collected from the shallow (3-4 m) back reef of Moorea, French Polynesia (17°28.614'S, 149°48.917'W), and experiments conducted during April and May 2011. An increase in pCO2 to 76.6 Pa had no effect on any dependent variable, but 87.2 Pa pCO2 reduced area-normalized (but not biomass-normalized) respiration 36 %, as well as maximum photochemical efficiency (Fv/Fm) of open RCIIs and effective photochemical efficiency of RCIIs in actinic light (Delta F/F'm ); neither biomass, calcification, nor the energy expenditure coincident with calcification (J/g) was effected. These results do not support the hypothesis that high pCO2 reduces coral calcification through increased metabolic costs and, instead, suggest that high pCO2 causes metabolic depression and photochemical impairment similar to that associated with bleaching. Evidence of a pCO2 threshold between 76.6 and 87.2 Pa for inhibitory effects on respiration and photochemistry deserves further attention as it might signal the presence of unpredictable effects of rising pCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 µatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the important role of N2 fixation for primary productivity and CO2 sequestration, it is crucial to assess the response of diazotrophs to ocean acidification. Previous studies on the genus Trichodesmium suggested a strong sensitivity towards ocean acidification. In view of the large functional diversity in N2 fixers, the objective of this study was to improve our knowledge of the CO2 responses of other diazotrophs. To this end, the single-celled Cyanothece sp. and two heterocystous species, Nodularia spumigena and the symbiotic Calothrix rhizosoleniae, were acclimated to two pCO2 levels (380 vs. 980 µatm). Growth rates, cellular composition (carbon, nitrogen and chlorophyll a) as well as carbon and N2 fixation rates (14C incorporation, acetylene reduction) were measured and compared to literature data on different N2 fixers. The three species investigated in this study responded differently to elevated pCO2, showing enhanced, decreased as well as unaltered growth and production rates. For instance, Cyanothece increased production rates with pCO2, which is in line with the general view that N2 fixers benefit from ocean acidification. Due to lowered growth and production of Nodularia, nitrogen input to the Baltic Sea might decrease in the future. In Calothrix, no significant changes in growth or production could be observed, even though N2 fixation was stimulated under elevated pCO2. Reviewing literature data confirmed a large variability in CO2 sensitivity across diazotrophs. The contrasting response patterns in our and previous studies were discussed with regard to the carbonate chemistry in the respective natural habitats, the mode of N2 fixation as well as differences in cellular energy limitation between the species. The group-specific CO2 sensitivities will impact differently on future biogeochemical cycles of open-ocean environments and systems like the Baltic Sea and should therefore be considered in models estimating climate feedback effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I tested the hypothesis that the effects of high pCO2 and temperature on massive Porites spp. (Scleractinia) are modified by heterotrophic feeding (zooplanktivory). Small colonies of massive Porites spp. from the back reef of Moorea, French Polynesia, were incubated for 1 month under combinations of temperature (29.3°C vs. 25.6°C), pCO2 (41.6 vs. 81.5 Pa), and feeding regimes (none vs. ad libitum access to live Artemia spp.), with the response assessed using calcification and biomass. Area-normalized calcification was unaffected by pCO2, temperature, and the interaction between the two, although it increased 40% with feeding. Biomass increased 35% with feeding and tended to be higher at 25.6°C compared to 29.3°C, and as a result, biomass-normalized calcification statistically was unaffected by feeding, but was depressed 12-17% by high pCO2, with the effect accentuated at 25.6°C. These results show that massive Porites spp. has the capacity to resist the effects on calcification of 1 month exposure to 81.5 Pa pCO2 through heterotrophy and changes in biomass. Area-normalized calcification is sustained at high pCO2 by a greater biomass with a reduced biomass-normalized rate of calcification. This mechanism may play a role in determining the extent to which corals can resist the long-term effects of ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that acidified seawater can have indirect biological effects by disrupting the capability of organisms to express induced defences, hence, increasing their vulnerability to predation. The intertidal gastropod Littorina littorea produced thicker shells in the presence of predation (crab) cues but this response was disrupted at low seawater pH. This response was accompanied by a marked depression in metabolic rate (hypometabolism) under the joint stress of high predation risk and reduced pH. However, snails in this treatment apparently compensated for a lack of morphological defence, by increasing their avoidance behaviour, which, in turn, could affect their interactions with other organisms. Together, these findings suggest that biological effects from ocean acidification may be complex and extend beyond simple direct effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of medium term (32 d) hypercapnia on the immune response of Mytilus edulis were investigated in mussels exposed to acidified (using CO2) sea water (pH 7.7, 7.5 or 6.7; control: pH 7.8). Levels of phagocytosis increased significantly during the exposure period, suggesting an immune response induced by the experimental set-up. However, this induced stress response was suppressed when mussels were exposed to acidified sea water. Acidified sea water did not have any significant effects on other immuno-surveillance parameters measured (superoxide anion production, total and differential cell counts). These results suggest that ocean acidification may impact the physiological condition and functionality of the haemocytes and could have a significant effect on cellular signalling pathways, particularly those pathways that rely on specific concentrations of calcium, and so may be disrupted by calcium carbonate shell dissolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (>1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C, and additionally 900 µatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 /d to D = 0.1 /d (D = µ) induced the strongest response in E. huxleyi. At µ = 0.3 /d, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At µ = 0.1 /d, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at µ = 0.1 /d at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At µ= 0.3 /d, pCCHO concentration increased significantly with elevated CO2 and temperature. At µ = 0.1 /d, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, 1H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400?µatm) and N sources (N2 and NO3-). Subsequently, biomass production and the main energy-generating processes (photosynthesis and respiration) and energy-consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2-dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3-grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3- users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.