991 resultados para Mouse lymphoma assay
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.
Resumo:
Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.
Resumo:
Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.
Resumo:
Escherichia coli sequence type 131 (ST131) have emerged as a pandemic lineage of important multidrug resistant pathogens worldwide. Despite many studies examining the epidemiology of ST131, only a few studies to date have investigated the capacity of ST131 strains to form biofilms. Some of these studies have reported contrasting findings, with no specific ST131 biofilm-promoting factors identified. Here we examined a diverse collection of ST131 isolates for in vitro biofilm formation in different media and assay conditions, including urine from healthy adult women. We found significant differences among strains and assay conditions, which offers an explanation for the contrasting findings reported by previous studies using a single condition. Importantly, we showed that expression of type 1 fimbriae is a critical determinant for biofilm formation by ST131 strains and that inhibition of the FimH adhesin significantly reduces biofilm formation. We also offer direct genetic evidence for the contribution of type 1 fimbriae in biofilm formation by the reference ST131 strain EC958, a representative of the clinically dominant H30-Rx ST131 subgroup. This is the first study of ST131 biofilm formation in biologically relevant conditions and paves the way for the application of FimH inhibitors in treating drug resistant ST131 biofilm infections.
Resumo:
Growth is a fundamental aspect of life cycle of all organisms. Body size varies highly in most animal groups, such as mammals. Moreover, growth of a multicellular organism is not uniform enlargement of size, but different body parts and organs grow to their characteristic sizes at different times. Currently very little is known about the molecular mechanisms governing this organ-specific growth. The genome sequencing projects have provided complete genomic DNA sequences of several species over the past decade. The amount of genomic sequence information, including sequence variants within species, is constantly increasing. Based on the universal genetic code, we can make sense of this sequence information as far as it codes proteins. However, less is known about the molecular mechanisms that control expression of genes, and about the variations in gene expression that underlie many pathological states in humans. This is caused in part by lack of information about the second genetic code that consists of the binding specificities of transcription factors and the combinatorial code by which transcription factor binding sites are assembled to form tissue-specific and/or ligand-regulated enhancer elements. This thesis presents a high-throughput assay for identification of transcription factor binding specificities, which were then used to measure the DNA binding profiles of transcription factors involved in growth control. We developed ‘enhancer element locator’, a computational tool, which can be used to predict functional enhancer elements. A genome-wide prediction of human and mouse enhancer elements generated a large database of enhancer elements. This database can be used to identify target genes of signaling pathways, and to predict activated transcription factors based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c- and N-Myc genes, which has implications to organ specific growth control and tumor type specificity of oncogenes. Furthermore, we were able to locate a variation in a single nucleotide, which carries a susceptibility to colorectal cancer, to an enhancer element and propose a mechanism by which this SNP might be involved in generation of colorectal cancer.
Resumo:
Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.
Resumo:
5-Fluoro-2'-deoxyuricine is incorporated into DNA of mouse breast tumour Image . The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. FUra, 5-Fluorouracil; FdUR, 5-Fluoro-2'-deoxyuridine; FdUMP, 5-Fluoro-2'-deoxyuridine-5'-monophosphate.
Resumo:
The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.
Resumo:
Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.
Resumo:
The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.