980 resultados para Motore Diesel turbocompressore
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Given the current energy crisis experienced in our country with the lack of rain in some areas, the energy distributors were forced to resort to thermal power plants to complement their energy production; raising the cost of electricity generation, they have been forced to repass this value to the customers through the Tariff Flags. Concerned about a substantial increase in their electric bill, some consumers were forced to look for alternatives so that their results are not affected. The use of diesel generation at peak hours is a relatively simple and inexpensive alternative that has been widely used for several industrial, commercial and service customers. In this present work, we conducted a feasibility study of the use of diesel generators at peak hours in a medium-sized hospital, calculating the depreciation period for the investment through savings in electricity bills
Resumo:
Starting induction motors on isolated or weak systems is a highly dynamic process that can cause motor and load damage as well as electrical network fluctuations. Mechanical damage is associated with the high starting current drawn by a ramping induction motor. In order to compensate the load increase, the voltage of the electrical system decreases. Different starting methods can be applied to the electrical system to reduce these and other starting method issues. The purpose of this thesis is to build accurate and usable simulation models that can aid the designer in making the choice of an appropriate motor starting method. The specific case addressed is the situation where a diesel-generator set is used as the electrical supplied source to the induction motor. The most commonly used starting methods equivalent models are simulated and compared to each other. The main contributions of this thesis is that motor dynamic impedance is continuously calculated and fed back to the generator model to simulate the coupling of the electrical system. The comparative analysis given by the simulations has shown reasonably similar characteristics to other comparative studies. The diesel-generator and induction motor simulations have shown good results, and can adequately demonstrate the dynamics for testing and comparing the starting methods. Further work is suggested to refine the equivalent impedance presented in this thesis.
Resumo:
Given the current energy crisis experienced in our country with the lack of rain in some areas, the energy distributors were forced to resort to thermal power plants to complement their energy production; raising the cost of electricity generation, they have been forced to repass this value to the customers through the Tariff Flags. Concerned about a substantial increase in their electric bill, some consumers were forced to look for alternatives so that their results are not affected. The use of diesel generation at peak hours is a relatively simple and inexpensive alternative that has been widely used for several industrial, commercial and service customers. In this present work, we conducted a feasibility study of the use of diesel generators at peak hours in a medium-sized hospital, calculating the depreciation period for the investment through savings in electricity bills
Resumo:
OBJECTIVE: Due to their toxicity, diesel emissions have been submitted to progressively more restrictive regulations in developed countries. However, in Brazil, the implementation of the Cleaner Diesel Technologies policy (Euro IV standards for vehicles produced in 2009 and low-sulfur diesel with 50 ppm of sulfur) was postponed until 2012 without a comprehensive analysis of the effect of this delay on public health parameters. We aimed to evaluate the impact of the delay in implementing the Cleaner Diesel Technologies policy on health indicators and monetary health costs in Brazil. METHODS: The primary estimator of exposure to air pollution was the concentration of ambient fine particulate matter (particles with aerodynamic diameters, <2.5 mu m, [PM2.5]). This parameter was measured daily in six Brazilian metropolitan areas during 2007-2008. We calculated 1) the projected reduction in the PM2.5 that would have been achieved if the Euro IV standards had been implemented in 2009 and 2) the expected reduction after implementation in 2012. The difference between these two time curves was transformed into health outcomes using previous dose-response curves. The economic valuation was performed based on the DALY (disability-adjusted life years) method. RESULTS: The delay in implementing the Cleaner Diesel Technologies policy will result in an estimated excess of 13,984 deaths up to 2040. Health expenditures are projected to be increased by nearly US$ 11.5 billion for the same period. CONCLUSIONS: The present results indicate that a significant health burden will occur because of the postponement in implementing the Cleaner Diesel Technologies policy. These results also reinforce the concept that health effects must be considered when revising fuel and emission policies.
Resumo:
In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.