889 resultados para Motion Tracking System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Things change. Words change, meaning changes and use changes both words and meaning. In information access systems this means concept schemes such as thesauri or clas- sification schemes change. They always have. Concept schemes that have survived have evolved over time, moving from one version, often called an edition, to the next. If we want to manage how words and meanings - and as a conse- quence use - change in an effective manner, and if we want to be able to search across versions of concept schemes, we have to track these changes. This paper explores how we might expand SKOS, a World Wide Web Consortium (W3C) draft recommendation in order to do that kind of tracking.The Simple Knowledge Organization System (SKOS) Core Guide is sponsored by the Semantic Web Best Practices and Deployment Working Group. The second draft, edited by Alistair Miles and Dan Brickley, was issued in November 2005. SKOS is a “model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, other types of controlled vocabulary and also concept schemes embedded in glossaries and terminologies” in RDF. How SKOS handles version in concept schemes is an open issue. The current draft guide suggests using OWL and DCTERMS as mechanisms for concept scheme revision.As it stands an editor of a concept scheme can make notes or declare in OWL that more than one version exists. This paper adds to the SKOS Core by introducing a tracking sys- tem for changes in concept schemes. We call this tracking system vocabulary ontogeny. Ontogeny is a biological term for the development of an organism during its lifetime. Here we use the ontogeny metaphor to describe how vocabularies change over their lifetime. Our purpose here is to create a conceptual mechanism that will track these changes and in so doing enhance information retrieval and prevent document loss through versioning, thereby enabling persistent retrieval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Usingof belt for high precision applications has become appropriate because of the rapid development in motor and drive technology as well as the implementation of timing belts in servo systems. Belt drive systems provide highspeed and acceleration, accurate and repeatable motion with high efficiency, long stroke lengths and low cost. Modeling of a linear belt-drive system and designing its position control are examined in this work. Friction phenomena and position dependent elasticity of the belt are analyzed. Computer simulated results show that the developed model is adequate. The PID control for accurate tracking control and accurate position control is designed and applied to the real test setup. Both the simulation and the experimental results demonstrate that the designed controller meets the specified performance specifications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate frame

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Os serviços baseados em localização vieram dar um novo alento à criatividade dos programadores de aplicações móveis. A vulgarização de dispositivos com capacidades de localização integradas deu origem ao desenvolvimento de aplicações que gerem e apresentam informação baseada na posição do utilizador. Desde então, o mercado móvel tem assistido ao aparecimento de novas categorias de aplicações que tiram proveito desta capacidade. Entre elas, destaca-se a monitorização remota de dispositivos, que tem vindo a assumir uma importância crescente, tanto no sector particular como no sector empresarial. Esta dissertação começa por apresentar o estado da arte sobre os diferentes sistemas de posicionamento, categorizados pela sua eficácia em ambientes internos ou externos, assim como diferentes protocolos de comunicação em tempo quase-real. É também feita uma análise ao estado actual do mercado móvel. Actualmente o mercado possui diferentes plataformas móveis com características únicas que as fazem rivalizar entre si, com vista a expandirem a sua quota de mercado. É por isso elaborado um breve estudo sobre os sistemas operativos móveis mais relevantes da actualidade. É igualmente feita uma abordagem mais profunda à arquitectura da plataforma móvel da Apple - o iOS – que serviu de base ao desenvolvimento de uma solução optimizada para localização e monitorização de dispositivos móveis. A monitorização implica uma utilização intensiva de recursos energéticos e de largura de banda que os dispositivos móveis da actualidade não estão aptos a suportar. Dado o grande consumo energético do GPS face à precária autonomia destes dispositivos, é apresentado um estudo em que se expõem soluções que permitem gerir de forma optimizada a utilização do GPS. O elevado custo dos planos de dados facultados pelas operadoras móveis é também considerado, pelo que são exploradas soluções que visam minimizar a utilização de largura de banda. Deste trabalho, nasce a aplicação EyeGotcha, que para além de permitir localizar outros utilizadores de dispositivos móveis de forma optimizada, permite também monitorizar as suas acções baseando-se num conjunto de regras pré-definidas. Estas acções são reportadas às entidades monitoras, de modo automatizado e sob a forma de alertas. Visionando-se a comercialização da aplicação, é portanto apresentado um modelo de negócio que permite obter receitas capazes de cobrirem os custos de manutenção de serviços, aos quais o funcionamento da aplicação móvel está subjugado.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear Dynamics, Vol. 38

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oceans - San Diego, 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

21st Annual Conference of the International Group for Lean Construction – IGLC 21 – Fortaleza, Brazil

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one