981 resultados para Morphological trajectory model
Resumo:
This paper outlines a current investigation of sugar accumulation in sweet sorghum to assist in understanding and simplifying this complex trait in sugarcane. A recombinant inbred line (RIL) sorghum population, between a sweet and a grain sorghum, has been developed and phenotyped for various morphological and agronomic traits related to grain yield, biomass and stem sugar content. A genetic linkage map will be constructed for the sweet sorghum population with the objective of identifying genomic regions associated with sucrose accumulation in sweet sorghum. This will lead to further work, including comparative mapping in sugarcane, to identify the extent to which sweet sorghum can be used as a model for investigating sugar accumulation in sugarcane.
Resumo:
In this paper we present an algorithm as the combination of a low level morphological operation and model based Global Circular Shortest Path scheme to explore the segmentation of the Right Ventricle. Traditional morphological operations were employed to obtain the region of interest, and adjust it to generate a mask. The image cropped by the mask is then partitioned into a few overlapping regions. Global Circular Shortest Path algorithm is then applied to extract the contour from each partition. The final step is to re-assemble the partitions to create the whole contour. The technique is deemed quite reliable and robust, as this is illustrated by a very good agreement between the extracted contour and the expert manual drawing output.
Resumo:
Derivational morphology proposes meaningful connections between words and is largely unrepresented in lexical databases. This thesis presents a project to enrich a lexical database with morphological links and to evaluate their contribution to disambiguation. A lexical database with sense distinctions was required. WordNet was chosen because of its free availability and widespread use. Its suitability was assessed through critical evaluation with respect to specifications and criticisms, using a transparent, extensible model. The identification of serious shortcomings suggested a portable enrichment methodology, applicable to alternative resources. Although 40% of the most frequent words are prepositions, they have been largely ignored by computational linguists, so addition of prepositions was also required. The preferred approach to morphological enrichment was to infer relations from phenomena discovered algorithmically. Both existing databases and existing algorithms can capture regular morphological relations, but cannot capture exceptions correctly; neither of them provide any semantic information. Some morphological analysis algorithms are subject to the fallacy that morphological analysis can be performed simply by segmentation. Morphological rules, grounded in observation and etymology, govern associations between and attachment of suffixes and contribute to defining the meaning of morphological relationships. Specifying character substitutions circumvents the segmentation fallacy. Morphological rules are prone to undergeneration, minimised through a variable lexical validity requirement, and overgeneration, minimised by rule reformulation and restricting monosyllabic output. Rules take into account the morphology of ancestor languages through co-occurrences of morphological patterns. Multiple rules applicable to an input suffix need their precedence established. The resistance of prefixations to segmentation has been addressed by identifying linking vowel exceptions and irregular prefixes. The automatic affix discovery algorithm applies heuristics to identify meaningful affixes and is combined with morphological rules into a hybrid model, fed only with empirical data, collected without supervision. Further algorithms apply the rules optimally to automatically pre-identified suffixes and break words into their component morphemes. To handle exceptions, stoplists were created in response to initial errors and fed back into the model through iterative development, leading to 100% precision, contestable only on lexicographic criteria. Stoplist length is minimised by special treatment of monosyllables and reformulation of rules. 96% of words and phrases are analysed. 218,802 directed derivational links have been encoded in the lexicon rather than the wordnet component of the model because the lexicon provides the optimal clustering of word senses. Both links and analyser are portable to an alternative lexicon. The evaluation uses the extended gloss overlaps disambiguation algorithm. The enriched model outperformed WordNet in terms of recall without loss of precision. Failure of all experiments to outperform disambiguation by frequency reflects on WordNet sense distinctions.
Resumo:
We investigate the sensitivity of a Markov model with states and transition probabilities obtained from clustering a molecular dynamics trajectory. We have examined a 500 ns molecular dynamics trajectory of the peptide valine-proline-alanine-leucine in explicit water. The sensitivity is quantified by varying the boundaries of the clusters and investigating the resulting variation in transition probabilities and the average transition time between states. In this way, we represent the effect of clustering using different clustering algorithms. It is found that in terms of the investigated quantities, the peptide dynamics described by the Markov model is sensitive to the clustering; in particular, the average transition times are found to vary up to 46%. Moreover, inclusion of nonphysical sparsely populated clusters can lead to serious errors of up to 814%. In the investigation, the time step used in the transition matrix is determined by the minimum time scale on which the system behaves approximately Markovian. This time step is found to be about 100 ps. It is concluded that the description of peptide dynamics with transition matrices should be performed with care, and that using standard clustering algorithms to obtain states and transition probabilities may not always produce reliable results.
Resumo:
BACKGROUND: Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. METHODS: In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. RESULTS: WF decreased the viability of C2C12 myotubes, especially at concentrations of 20-25 mug.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. CONCLUSION: These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model. © 2008 Yano et al; licensee BioMed Central Ltd.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.
Resumo:
To predict the maneuvering performance of a propelled SPAR vessel, a mathematical model was established as a path simulator. A system-based mathematical model was chosen as it offers advantages in cost and time over full Computational Fluid Dynamics (CFD) simulations. The model is intended to provide a means of optimizing the maneuvering performance of this new vessel type. In this study the hydrodynamic forces and control forces are investigated as individual components, combined in a vectorial setting, and transferred to a body-fixed basis. SPAR vessels are known to be very sensitive to large amplitude motions during maneuvers due to the relatively small hydrostatic restoring forces. Previous model tests of SPAR vessels have shown significant roll and pitch amplitudes, especially during course change maneuvers. Thus, a full 6 DOF equation of motion was employed in the current numerical model. The mathematical model employed in this study was a combination of the model introduced by the Maneuvering Modeling Group (MMG) and the Abkowitz (1964) model. The new model represents the forces applied to the ship hull, the propeller forces and the rudder forces independently, as proposed by the MMG, but uses a 6DOF equation of motion introduced by Abkowitz to describe the motion of a maneuvering ship. The mathematical model was used to simulate the trajectory and motions of the propelled SPAR vessel in 10˚/10˚, 20˚/20˚ and 30˚/30˚ standard zig-zag maneuvers, as well as turning circle tests at rudder angles of 20˚ and 30˚. The simulation results were used to determine the maneuverability parameters (e.g. advance, transfer and tactical diameter) of the vessel. The final model provides the means of predicting and assessing the performance of the vessel type and can be easily adapted to specific vessel configurations based on the generic SPAR-type vessel used in this study.
Resumo:
Peer reviewed
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Retinitis pigmentosa (RP) is one of the most common retinal degenerative conditions affecting people worldwide, and is currently incurable. It is characterized by the progressive loss of photoreceptors, in which the death of rod cells leads to the secondary death of cone cells; the cause of eventual blindness. As rod cells die, retinal-oxygen metabolism becomes perturbed, leading to increased levels of reactive oxygen species (ROS) and thus oxidative stress; a key factor in the secondary death of cones. In this study, norgestrel, an FDA-approved synthetic analog of progesterone, was found to be a powerful neuroprotective antioxidant, preventing light-induced ROS in photoreceptor cells, and subsequent cell death. Norgestrel also prevented light-induced photoreceptor morphological changes that were associated with ROS production, and that are characteristic of RP. Further investigation showed that norgestrel acts via post-translational modulation of the major antioxidant transcription factor Nrf2; bringing about its phosphorylation, subsequent nuclear translocation, and increased levels of its effector protein superoxide dismutase 2 (SOD2). In summary, these results demonstrate significant protection of photoreceptor cells from oxidative stress, and underscore the potential of norgestrel as a therapeutic option for RP.
Resumo:
Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.