996 resultados para Moorland hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Proposal for an evaluation protocol of the ecological quality of Andean rivers (CERA) and its use in two basins in Ecuador and Peru A Rapid Protocol is presented for Evaluation of the Ecological Status of Andean Rivers (CERA) localized over 2000 m.a.s.l. from the Northern Andes (Venezuela) through the Altiplano in the Central Andes (Bolivia). This protocol was used in 45 sampling sites in the Guayllabamba River Basin in Ecuador and in 42 sampling sites in the Ca nete River Basin in Peru. Previously, and in order to test if the sampling stations may or not be considered reference stations, we constructed a method that assesses 24 basin attributes, hydrology, reach and riverbed and that uctuates from 24 to 120 points; sites with values higher than 100 were considered as potential reference sites. Besides the benthic macroinvertebrats" evaluation, the river habitat and riparian vegetation were also evaluated through of the application of the indices ABI (R´ os et al., submitted), IHF (Pardo et al., 2002) and QBR-And, respectively. The convenience of the initial allocation of the reference sites was evaluated as well. These indices have been properly adapted to the conditions and characteristics of the high Andes rivers. The results obtained for both basins were compared and discussed. Through the use of the CERA protocol, the particular perturbation gradients and the natural variability of the reference sites in both countries were recognized. RESUMEN Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicaci´on a dos cuencas en Ecuador y Perú Se presenta un protocolo rápido de evaluación de la Calidad Ecológica de Ríos Andinos (CERA), situados sobre los 2000 m.s.n.m, desde los Andes del Norte (Venezuela) hasta el Altiplano de los Andes Centrales (Bolivia). Este protocolo ha sido aplicado en 45 estaciones de muestreo en la cuenca del río Guayllabamba en Ecuador y en 42 estaciones de muestreo en la cuenca del río Cañete en Perú. Previamente, para probar si las estaciones de muestreo pueden o no ser estaciones de referencia construimos un método que valora 24 atributos de cuenca, hidrología, tramo y lecho y que fluctúa de 24 a 120 puntos; valores superiores a 100 fueron considerados como sitios potencialmente de referencia. Además del estudio de los macroinvertebrados bentónicos, se evaluó el hábitat fluvial y la comunidad vegetal de ribera a través de la aplicación de los índices ABI (Ríos et al., sometido), IHF (Pardo et al., 2002) y QBR-And respectivamente; así como la conveniencia de la asignación inicial de las estaciones de referencia. Estos índices han sido adecuadamente adaptados a las condiciones y características propias de los ríos altoandinos. Los resultados obtenidos fueron comparados y discutidos entre ambas cuencas. Mediante la aplicación del protocolo CERA se han reconocido los respectivos gradientes de perturbación y la variabilidad natural de las estaciones de referencia en ambos países.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The international HyMeX (Hydrological Mediterranean Experiment) program aims to improve our understanding of the water cycle in the Mediterranean, using a multidisciplinary and multiscale approach and with emphasis on extreme events. This program will improve our understanding and our predictive ability of hydrometeorological hazards including their evolution within the next century. One of the most important results of the program will be its observational campaigns, which will greatly improve the data available, leading to significant scientific results. The interest of the program for the Spanish research groups is described, as the active participation of some of them in the design and execution of the observational activities. At the same time, due to its location, Spain is key to the program, being a good observation platform. HyMeX will enrich the work of the Spanish research groups, it will improve the predictive ability of the weather services, will help us to have a better understanding of the impacts of hydrometeorological extremes on our society and will lead to better strategies for adapting to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.