969 resultados para Molecular interaction
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.
Resumo:
One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or ‘‘moonlighting’’, proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.
Resumo:
Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have had a systemic contribution to human evolution by increasing the participation of central genes in the evolutionary process.
Resumo:
Stathmin is a regulator of microtubule dynamics which undergoes extensive phosphorylation during the cell cycle as well as in response to various extracellular factors. Four serine residues are targets for protein kinases: Ser-25 and Ser-38 for proline-directed kinases such as mitogen-activated protein kinase and cyclin-dependent protein kinase, and Ser-16 and Ser-63 for cAMP-dependent protein kinase. We studied the effect of phosphorylation on the microtubule-destabilizing activity of stathmin and on its interaction with tubulin in vitro. We show that triple phosphorylation on Ser-16, Ser-25, and Ser-38 efficiently inhibits its activity and prevents its binding to tubulin.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
Résumé large public Le glucose est une source d'énergie essentielle pour notre organisme, indispensable pour le bon fonctionnement des cellules de notre corps. Les cellules β du pancréas sont chargées de réguler l'utilisation du glucose et de maintenir la glycémie (taux de glucose dans le sang) à un niveau constant. Lorsque la glycémie augmente, ces dernières sécrètent l'insuline, une hormone favorisant l'absorption, l'utilisation et le stockage du glucose. Une sécrétion insuffisante d'insuline provoque une élévation anormale du taux de glucose dans le sang (hyperglycémie) et peut mener au développement du diabète sucré. L'insuline est sécrétée dans le sang par un mécanisme particulier appelé exocytose. Une meilleure compréhension de ce mécanisme est nécessaire dans l'espoir de trouver des nouvelles thérapies pour traiter les 170 millions de personnes atteintes de diabète sucré à travers le monde. L'implication de diverses protéines, comme les SNAREs ou Rabs a déjà été démontrée. Cependant leurs mécanismes d'action restent, à ce jour, peu compris. De plus, l'adaptation de la machinerie d'exocytose à des conditions physiopathologiques, comme l'hyperglycémie, est encore à élucider. Le but de mon travail de thèse a été de clarifier le rôle de deux protéines, Noc2 et Tomosyn, dans l'exocytose ; puis de déterminer les effets d'une exposition prolongée à un taux élevé de glucose sur l'ensemble des protéines de la machinerie d'exocytose. Noc2 est un partenaire potentiel de deux Rabs connues pour leur implication dans les dernières étapes de l'exocytose, Rab3 et Rab27. Grâce à l'étude de différents mutants de Noc2, j'ai montré que l'interaction avec Rab27 permet à la protéine de s'associer avec les organelles de la cellule β contenant l'insuline. De plus, en diminuant sélectivement l'expression de Noc2, j'ai déterminé l'importance de cette protéine pour le bon fonctionnement du processus d'exocytose et le relâchement de l'insuline. Quant à Tomosyn, une protéine interagissant avec les protéines SNAREs, j'ai démontré son importance dans la sécrétion d'insuline en diminuant de manière sélective son expression dans les cellules β. Ensuite, grâce à une combinaison d'approches moléculaires et de microscopie, j'ai mis en évidence le rôle de Tomosyn dans les dernières étapes de l'exocytose. Enfin, puisque la sécrétion d'insuline est diminuée lors d'une hyperglycémie prolongée, j'ai analysé l'adaptation de la machinerie d'exocytose à ces conditions. Ceci m'a permis de découvrir que l'expression de quatre protéines essentielles pour le processus d'exocytose, Noc2, Rab3, Rab27 et Granuphilin, est fortement diminuée lors d'une hyperglycémie chronique. L'ensemble de ces données met en évidence l'importance de Noc2 et Tomosyn dans la sécrétion d'insuline. L'inhibition, par un taux élevé de glucose, de l'expression de Noc2 et d'autres protéines indispensables pour l'exocytose suggère que ce phénomène pourrait contribuer au développement du diabète sucré. Résumé L'exocytose d'insuline, en réponse au glucose circulant dans le sang, est la fonction principale de la cellule β. Celle-ci permet de stabiliser le taux de glucose sanguin (glycémie). Le diabète de type 2 est caractérisé par une glycémie élevée due, principalement, à un défaut de sécrétion d'insuline en réponse au glucose. La compréhension des mécanismes qui contrôlent l'exocytose d'insuline est essentielle pour clarifier les causes du diabète sucré. Plusieurs composants impliqués dans ce processus ont été identifiés. Ceux-ci incluent les SNAREs Syntaxin-1, VAMP2 et SNAP25 et les GTPases Rab3 et Rab27 qui jouent un rôle dans les dernières étapes de l'exocytose. Pendant mon travail de thèse, j'ai étudié le rôle de Noc2, un des partenaires de Rab3 et Rab27, dans l'exocytose d'insuline. Nous avons déterminé que Noc2 s'associe aux granules de sécrétion d'insuline grâce à son interaction avec Rab27. La diminution de l'expression de Noc2 dans la lignée cellulaire β INS-1E, par ARN interférence, influence négativement la sécrétion d'insuline stimulée par différents sécrétagogues et prouve que cette protéine Noc2 est essentielle pour l'exocytose d'insuline. L'interaction avec Munc13, une protéine impliquée dans l'arrimage des vésicules, suggère que Noc2 participe au recrutement des granules d'insuline à la membrane plasmique. Ensuite, j'ai analysé l'adaptation de la machinerie d'exocytose à des concentrations supraphysiologiques de glucose. Le niveau d'expression de Rab3 et Rab27 et de leurs effecteurs Granuphilin/S1p4 et Noc2 est fortement diminué par une exposition prolongée des cellules β à haut glucose. L'effet observé est en relation avec l'induction de l'expression de ICER, un facteur de transcription surexprimé dans des conditions d'hyperglycémie et également dans des modèles génétiques de diabète de type 2. La surexpression de ICER dans des cellules INS-1E diminue l'expression de Rab3, Rab27, Granuphilin/Slp4 et Noc2 et par conséquent l'exocytose d'insuline. Ainsi, l'induction de ICER, après une exposition prolongée à haut glucose, régule négativement l'expression de protéines essentielles pour l'exocytose et altère la sécrétion d'insuline. Ce mécanisme pourrait contribuer au dysfonctionnement de l'exocytose d'insuline dans le diabète de type 2. Dans la dernière partie de ma thèse, j'ai investigué le rôle de la protéine Tomosyn-1 dans la formation du complexe SNARE. Cette protéine a une forte affinité pour Syntaxin-1 et contient un domaine SNARE. Tomosyn-1 est concentrée dans les régions cellulaires enrichies en granules de sécrétion. La diminution sélective de l'expression de Tomosyn-1 induit une réduction de l'exocytose stimulée par différents sécrétagogues. Cet effet est dû à un défaut de fusion des granules avec la membrane plasmique. Ceci nous indique que Tomosyn-1 intervient dans une phase importante de la préparation des vésicules à la fusion, qui est nécessaire à l'exocytose. Abstract: Insulin exocytosis from pancreatic β-cells plays a central role in blood glucose homeostasis. Diabetes mellitus is a complex metabolic disorder characterized by secretory dysfunctions in pancreatic β-cells and release of amounts of insulin that are inappropriate to maintain blood glucose concentration within normal physiological ranges. To define the causes of β-cell failure a basic understanding of the molecular mechanisms that control insulin exocytosis is essential. Some of the molecular components involved in this process have been identified, including the SNARE proteins VAMP2, Syntaxin-1 and SNAP25 and the two GTPases, Rab3 and Rab27, that regulate the final steps of insulin secretion. I first investigated the role of Noc2, a potential Rab3 and Rab27 partner, in insulin secretion. I found that Noc2 associates with Rab27 and is recruited by this GTPase on insulin- containing granules. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of the β-cell line INS-1E to respond to secretagogues, indicating that appropriate levels of the protein are essential for insulin exocytosis. I also showed that Noc2 interacts with Munc13, a protein that controls vesicle priming, suggesting a possible involvement of Noc2 in the recruitment of secretory granules at the plasma membrane. In the second part of my thesis, I investigated the adaptation of the molecular machinery of exocytosis to physiopathological conditions. I found that the expression of Rab3, Rab27 and of their effectors Granuphilin/Slp4 and Noc2 is dramatically decreased by chronic exposure of β-ce1ls to supraphysiological glucose levels. The observed glucotoxic effect is a consequence of the induction of ICER, a transcriptional repressor that is increased by prolonged hyperglycemia and in genetic models of type 2 diabetes. Overexpression of ICER reduced Granuphilin, Noc2, Rab3 and Rab27 levels and inhibited exocytosis. These results suggest that the presence of inappropriate levels of ICER diminishes the expression of a group of proteins essential for exocytosis and contributes to defective insulin release in type 2 diabetes. In the last part of my thesis, I focused my attention on the role of Tomosyn-1, a Syntaxin-1 binding protein possessing a SNARE-like motif, in the control of SNARE complex assembly. I found that Tomosyn-1 is concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of Tomosyn-1 did not affect the number of secretory granules docked at the plasma membrane but decreased their release probability, resulting in a reduction in stimulus-induced insulin exocytosis. These findings suggest that Tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis in response to insulin secretagogues.
Resumo:
RÉSUMÉ Les protéines d'ancrage de la protéine kinase A (AKAPs) constituent une grande famille de protéines qui ciblent la protéine kinase A (PKA) à proximité de ses substrats physiologiques pour assurer leur régulation. Une nouvelle protéine de cette famille, appelée AKAP-Lbc, a été récemment caractérisée et fonctionne comme un facteur d'échange de nucléotides guanine (GEF) pour la petite GTPase Rho. AKAP-Lbc est régulée par différents signaux qui activent et désactivent son activité Rho-GEF. Son activation est assurée par la sous-unité alpha de la protéine G hétérotrimérique G12, tandis que son inhibition dépend de son interaction avec la PKA et 14-3-3. AKAP-Lbc est principalement exprimée dans le coeur et pourrait réguler des processus importants tels que l'hypertrophie et la différenciation des cardiomyocytes. Ainsi, il est crucial d'élucider les mécanismes moléculaires impliqués dans la régulation de son activité Rho-GEF. Le but général de ce travail de thèse est la caractérisation de deux nouveaux mécanismes impliqués dans la régulation de l'activité de AKAP-Lbc. Le premier mécanisme consiste en la régulation de l'activité de AKAP-Lbc par son homo-oligomérisation. Mes travaux montrent que l'homo-oligomérisation maintient AKAP-Lbc inactive, dans une conformation permettant à la PKA ancrée et à 14-3-3 d'exercer leur effet inhibiteur sur l'activité de AKAP-Lbc. Le second mécanisme concerne la régulation de l'activité de AKAP-Lbc via une nouvelle interaction entre AKAP-Lbc et la protéine LC3. LC3 joue un rôle crucial dans l'autophagie, un processus cellulaire qui adresse les protéines cytoplasmiques au lysosome pour leur dégradation. Ce mécanisme est particulièrement important pour le survie des cardiomyocytes durant les périodes d'absence de nutriments. Mes travaux mettent en évidence que LC3 inhibe l'activité Rho-GEF de AKAP-Lbc, ce qui suggère que, au-delà son rôle bien établi dans l'autophagie, LC3 participerait à la régulation de la signalisation de Rho. Prises ensembles, ces études contribuent à comprendre comment le complexe de signalisation formé par AKAP-Lbc régule la signalisation de Rho dans les cellules. Au-delà de leur intérêt au niveau biochimique, ces travaux pourraient aussi contribuer à élucider les réseaux de signalisation qui régulent des phénomènes physiologiques dans le coeur. ABSTRACT A-kinase anchoring proteins (AKAPs) are a group of functionally related proteins, which target the cAMP dependent protein kinase A (PKA) in close proximity to its physiological substrates for ensuring their regulation. A novel PKA anchoring protein, termed AKAP-Lbc, has been recently characterized, which also functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rho. AKAP-Lbc is regulated in a bi-directional manner by signals which activate or deactivate its Rho-GEF activity. Activation is mediated by the alpha subunit of the heterotrimeric G protein G12, whereas inhibition occurs following its interaction with PKA and 14-3-3. AKAP-Lbc is predominantly expressed in the heart and might regulate important processes such as hypertrophy and differentiation of cardiomyocytes. Therefore ít is crucial to elucidate the molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The general aim of the present thesis work is the characterization of two novel molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The first mechanism consists of the. regulation of AKAP-Lbc activity through its homooligomerization. I report here that homo-oligomerization maintains AKAP-Lbc inactive, under a conformation suitable for ensuring the inhibitory effect of anchored PKA and 14-33 on AKAP-Lbc activity. The second mechanism concerns the regulation of AKAP-Lbc activity through a novel interaction between AKAP-Lbc and ubiquitin-like protein LC3. LC3 is a key mediator of autophagy, which is a cellular process that targets cytosolic proteins to the lysosome for degradation. This process is particularly important for cardiomyocyte survival during conditions of nutrient starvation. Here, I show that LC3 is a negative regulator of the Rho-GEF activity of AKAP-Lbc, which suggests that, beyond its well established role in autophagy, LC3 can participate in the regulation of Rho signaling in cells. Overall, these findings contribute to understand how the AKAP-Lbc signaling complex can regulate the Rho signaling in cells. Beyond its interest at the biochemical level, this work might also contribute to elucidate the signaling network that regulate physiological events in the heart.
Resumo:
Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C) promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.
Resumo:
ABSTRACT : Fungal infections have become a major source of diseases in immuncompromised patients, but are quite benign in healthy individuals. As fungi are eukaryotes, and share many biological processes with humans, many antifungal drugs can cause toxicity in the patients. Therefore, the characterization of signaling pathways specific to the anti-fungal immune response is relevant for the better understanding of the disease and the development of new therapeutic approaches. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 is an innate non-Toll-like receptor containing immunoreceptor tyrosine-based activation motifs (ITAMs). Card9, Bc110 and Maltl are proteins that have been shown to play a key role in the Dectin-l-induced signaliñg pathway by controlling Dectin-l-mediated cell activation, cytokine production and innate anti-fungal immunity in mice. Here we investigate the role of the Card9-Bc110-Maltl complex in humans using the monocytic cell line THP-1. We show that Card9 interacts with Bc110 through a CARD-CARD interaction and that interaction of Card9 with Bc110 is required for NF-xB activation. We further demonstrate that Card9 is phosphorylated in its C-terminal part on serine residues. The phosphorylation status of Card9 can influence its ability to active NF-xB, since mutation of the phosphorylation sites increases its ability to activate NF-xB. We find that Card9 is expressed in myeloid derived cells, such as the human monocytic cell lines THP1 and U937, and in human monocyte-enriched PBLs and monocyte-derived DCs. Our findings demonstrate that Card9 is implicated in anti-fungal responses, since silencing of Card9 as well as of Bc110 and Maltl diminishes the capacity of THP1 cells to produce TNF-a in response to zymosan. Interestingly, activation of the NF-xB and MAPK pathway remained normal and levels of TNF-a mRNA produced were also not affected in THP 1 cells silenced for the expression of Card9, Bc110 or Malt1. Using a Malt1 inhibitor, we provide evidence that the proteolytic activity of Malt1 is needed for zymosan-induced TNF-a production in THP 1 cells and bone marrow-derived macrophages of mice, but further experiments are required to confirm these findings and identify the substrate(s) of Malt1. In conclusion, our results reveal an important role for Card9 in the innate immune response of human macrophages to fungi. RÉSUMÉ : Les infections fongiques sont une source majeure de maladie chez les patients immunodéprimés, alors qu'elles sont plutôt bénignes chez les individus sains. Comme les champignons sont des eucaryotes et partagent beaucoup de processus biologiques avec les humains, les médicaments antifongiques peuvent être source de toxicité chez les patients. Il est donc important de mieux caractériser les voies de signalisation intracellulaire des réponses anti-fongiques pour pouvoir développer de nouvelles approches thérapeutiques. La protéine Dectin-1 est le récepteur principal du composé fongique zymosan. Les protéines Card9, Bc110 et Maltl ont été décrites comme jouant un rôle primordial dans les signaux d'activation induits par Dectin-l, en contrôlant l'activité cellulaire, la production de cytokines et la défense anti-fongique dans les souris. Dans cette étude, nous investiguons le rôle du complexe Card9-Bc110-Maltl dans la lignée monocytaire humaine THP1. Nous montrons que Card9 interagit avec Bc110 par une interaction CARD-CARD et que cette interaction est requise pour activer le facteur de transcription NF-xB. Nous observons que Card9 est phosphorylé dans sa partie C-terminale sur des résidus serine et que l'état de phosphorylation de Card9 influence sa capacité à activer NF-xB. En effet, sa capacité à activer NF-xB est augmentée, après mutation des sites de phosphorylation. La génération d'un anticorps spécifique dirigé contre Card9 nous a permis de démontrer que Card9 est exprimé dans des cellules myéloïdes comme les lignées cellulaires monocytiques THP-1 et U-937, ainsi que dans les cellules dendritiques humaines. Nos résultats démontrent que Card9 est impliqué dans la réponse immunitaire antifongique puisque la réduction de l'expression de Card9 ainsi que de Bc110 et de Malt1 diminue la capacité des THP-1 à produire du TNF-a en réponse au zymosan. Par contre, les voies de signalisation NF-xB et MAPK ainsi que les niveaux de mRNA de TNF-a produits en réponse au zymosan ne sont pas affectés dans ces cellules. En utilisant un inhibiteur de Malt1, nous montrons que l'activité protéolytique de Malt1 est nécessaire pour la production de TNF-a induite par le zymosan dans les cellules THP-1 ainsi que dans les macrophages de souris, mais d'autres expériences seront nécessaires pour confirmer cette observation et identifier le(s) substrat(s) de Malt1 responsables de cet effet. En conclusion, nos résultats révèlent un rôle important de la protéine Card9 dans la réponse immunitaire innée antifongique dans les macrophages humains.
Resumo:
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Resumo:
The death-inducing receptor Fas is activated when cross-linked by the type II membrane protein Fas ligand (FasL). When human soluble FasL (sFasL, containing the extracellular portion) was expressed in human embryo kidney 293 cells, the three N-linked glycans of each FasL monomer were found to be essential for efficient secretion. Based on the structure of the closely related lymphotoxin alpha-tumor necrosis factor receptor I complex, a molecular model of the FasL homotrimer bound to three Fas molecules was generated using knowledge-based protein modeling methods. Point mutations of amino acid residues predicted to affect the receptor-ligand interaction were introduced at three sites. The F275L mutant, mimicking the loss of function murine gld mutation, exhibited a high propensity for aggregation and was unable to bind to Fas. Mutants P206R, P206D, and P206F displayed reduced cytotoxicity toward Fas-positive cells with a concomitant decrease in the binding affinity for the recombinant Fas-immunoglobulin Fc fusion proteins. Although the cytotoxic activity of mutant Y218D was unaltered, mutant Y218R was inactive, correlating with the prediction that Tyr-218 of FasL interacts with a cluster of three basic amino acid side chains of Fas. Interestingly, mutant Y218F could induce apoptosis in murine, but not human cells.
Resumo:
Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. L'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Récemment, l?eau liquide a été décrite comme une structure formée d?un réseau aléatoire de liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure à basse température, certaines liaisons hydrogènes sont détruites ce qui est énergétiquement défavorable. Les molécules d?eau s?arrangent alors autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l?eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise les liaisons hydrogènes. Maintenant, la dissolution des particules devient énergétiquement défavorable, et les particules se séparent de l?eau en formant des agrégats qui minimisent leur surface exposée à l?eau. Pourtant, à très haute température, les effets entropiques deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d?eau. En utilisant un modèle basé sur ces changements de structure formée par des liaisons hydrogènes j?ai pu reproduire les phénomènes principaux liés à l?hydrophobicité. J?ai trouvé une région de coexistence de deux phases entre les températures critiques inférieure et supérieure de solubilité, dans laquelle les particules hydrophobes s?agrègent. En dehors de cette région, les particules sont dissoutes dans l?eau. J?ai démontré que l?interaction hydrophobe est décrite par un modèle qui prend uniquement en compte les changements de structure de l?eau liquide en présence d?une particule hydrophobe, plutôt que les interactions directes entre les particules. Encouragée par ces résultats prometteurs, j?ai étudié des solutions aqueuses de particules hydrophobes en présence de co-solvants cosmotropiques et chaotropiques. Ce sont des substances qui stabilisent ou déstabilisent les agrégats de particules hydrophobes. La présence de ces substances peut être incluse dans le modèle en décrivant leur effet sur la structure de l?eau. J?ai pu reproduire la concentration élevée de co-solvants chaotropiques dans le voisinage immédiat de la particule, et l?effet inverse dans le cas de co-solvants cosmotropiques. Ce changement de concentration du co-solvant à proximité de particules hydrophobes est la cause principale de son effet sur la solubilité des particules hydrophobes. J?ai démontré que le modèle adapté prédit correctement les effets implicites des co-solvants sur les interactions de plusieurs corps entre les particules hydrophobes. En outre, j?ai étendu le modèle à la description de particules amphiphiles comme des lipides. J?ai trouvé la formation de différents types de micelles en fonction de la distribution des regions hydrophobes à la surface des particules. L?hydrophobicité reste également un sujet controversé en science des protéines. J?ai défini une nouvelle échelle d?hydrophobicité pour les acides aminés qui forment des protéines, basée sur leurs surfaces exposées à l?eau dans des protéines natives. Cette échelle permet une comparaison meilleure entre les expériences et les résultats théoriques. Ainsi, le modèle développé dans mon travail contribue à mieux comprendre les solutions aqueuses de particules hydrophobes. Je pense que les résultats analytiques et numériques obtenus éclaircissent en partie les processus physiques qui sont à la base de l?interaction hydrophobe.<br/><br/>Despite the importance of water in our daily lives, some of its properties remain unexplained. Indeed, the interactions of water with organic particles are investigated in research groups all over the world, but controversy still surrounds many aspects of their description. In my work I have tried to understand these interactions on a molecular level using both analytical and numerical methods. Recent investigations describe liquid water as random network formed by hydrogen bonds. The insertion of a hydrophobic particle at low temperature breaks some of the hydrogen bonds, which is energetically unfavorable. The water molecules, however, rearrange in a cage-like structure around the solute particle. Even stronger hydrogen bonds are formed between water molecules, and thus the solute particles are soluble. At higher temperatures, this strict ordering is disrupted by thermal movements, and the solution of particles becomes unfavorable. They minimize their exposed surface to water by aggregating. At even higher temperatures, entropy effects become dominant and water and solute particles mix again. Using a model based on these changes in water structure I have reproduced the essential phenomena connected to hydrophobicity. These include an upper and a lower critical solution temperature, which define temperature and density ranges in which aggregation occurs. Outside of this region the solute particles are soluble in water. Because I was able to demonstrate that the simple mixture model contains implicitly many-body interactions between the solute molecules, I feel that the study contributes to an important advance in the qualitative understanding of the hydrophobic effect. I have also studied the aggregation of hydrophobic particles in aqueous solutions in the presence of cosolvents. Here I have demonstrated that the important features of the destabilizing effect of chaotropic cosolvents on hydrophobic aggregates may be described within the same two-state model, with adaptations to focus on the ability of such substances to alter the structure of water. The relevant phenomena include a significant enhancement of the solubility of non-polar solute particles and preferential binding of chaotropic substances to solute molecules. In a similar fashion, I have analyzed the stabilizing effect of kosmotropic cosolvents in these solutions. Including the ability of kosmotropic substances to enhance the structure of liquid water, leads to reduced solubility, larger aggregation regime and the preferential exclusion of the cosolvent from the hydration shell of hydrophobic solute particles. I have further adapted the MLG model to include the solvation of amphiphilic solute particles in water, by allowing different distributions of hydrophobic regions at the molecular surface, I have found aggregation of the amphiphiles, and formation of various types of micelle as a function of the hydrophobicity pattern. I have demonstrated that certain features of micelle formation may be reproduced by the adapted model to describe alterations of water structure near different surface regions of the dissolved amphiphiles. Hydrophobicity remains a controversial quantity also in protein science. Based on the surface exposure of the 20 amino-acids in native proteins I have defined the a new hydrophobicity scale, which may lead to an improvement in the comparison of experimental data with the results from theoretical HP models. Overall, I have shown that the primary features of the hydrophobic interaction in aqueous solutions may be captured within a model which focuses on alterations in water structure around non-polar solute particles. The results obtained within this model may illuminate the processes underlying the hydrophobic interaction.<br/><br/>La vie sur notre planète a commencé dans l'eau et ne pourrait pas exister en son absence : les cellules des animaux et des plantes contiennent jusqu'à 95% d'eau. Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. En particulier, l'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Bien que l?eau soit généralement un bon solvant, un grand groupe de molécules, appelées molécules hydrophobes (du grecque "hydro"="eau" et "phobia"="peur"), n'est pas facilement soluble dans l'eau. Ces particules hydrophobes essayent d'éviter le contact avec l'eau, et forment donc un agrégat pour minimiser leur surface exposée à l'eau. Cette force entre les particules est appelée interaction hydrophobe, et les mécanismes physiques qui conduisent à ces interactions ne sont pas bien compris à l'heure actuelle. Dans mon étude j'ai décrit l'effet des particules hydrophobes sur l'eau liquide. L'objectif était d'éclaircir le mécanisme de l'interaction hydrophobe qui est fondamentale pour la formation des membranes et le fonctionnement des processus biologiques dans notre corps. Récemment, l'eau liquide a été décrite comme un réseau aléatoire formé par des liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure, certaines liaisons hydrogènes sont détruites tandis que les molécules d'eau s'arrangent autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l'eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise la structure de cage autour des particules hydrophobes. Maintenant, la dissolution des particules devient défavorable, et les particules se séparent de l'eau en formant deux phases. A très haute température, les mouvements thermiques dans le système deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d'eau. A l'aide d'un modèle qui décrit le système en termes de restructuration dans l'eau liquide, j'ai réussi à reproduire les phénomènes physiques liés à l?hydrophobicité. J'ai démontré que les interactions hydrophobes entre plusieurs particules peuvent être exprimées dans un modèle qui prend uniquement en compte les liaisons hydrogènes entre les molécules d'eau. Encouragée par ces résultats prometteurs, j'ai inclus dans mon modèle des substances fréquemment utilisées pour stabiliser ou déstabiliser des solutions aqueuses de particules hydrophobes. J'ai réussi à reproduire les effets dûs à la présence de ces substances. De plus, j'ai pu décrire la formation de micelles par des particules amphiphiles comme des lipides dont la surface est partiellement hydrophobe et partiellement hydrophile ("hydro-phile"="aime l'eau"), ainsi que le repliement des protéines dû à l'hydrophobicité, qui garantit le fonctionnement correct des processus biologiques de notre corps. Dans mes études futures je poursuivrai l'étude des solutions aqueuses de différentes particules en utilisant les techniques acquises pendant mon travail de thèse, et en essayant de comprendre les propriétés physiques du liquide le plus important pour notre vie : l'eau.
Resumo:
Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling-although crucial for crop improvement-is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.
Resumo:
Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.
Resumo:
Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.