991 resultados para Modeling complexity
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
Let g be the genus of the Hermitian function field H/F(q)2 and let C-L(D,mQ(infinity)) be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the dimension/length profile (DLP) lower bound on the state complexity of C-L(D,mQ(infinity)). Here we determine when this lower bound is tight and when it is not. For m less than or equal to n-2/2 or m greater than or equal to n-2/2 + 2g, the DLP lower bounds reach Wolf's upper bound on state complexity and thus are trivially tight. We begin by showing that for about half of the remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute state complexity of C-L(D,mQ(infinity)), which improves the DLP lower bound. Next we give a good coordinate order for C-L(D,mQ(infinity)). With this good order, the state complexity of C-L(D,mQ(infinity)) achieves its DLP bound (whenever this is possible). This coordinate order also provides an upper bound on the absolute state complexity of C-L(D,mQ(infinity)) (for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity do not meet for some of these values of m, and this leaves open the question whether our coordinate order is best possible in these cases. A straightforward application of these results is that if C-L(D,mQ(infinity)) is self-dual, then its state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n /2 - q(2)/4, and, in particular, so does its absolute state complexity.
Resumo:
Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
This paper characterizes when a Delone set X in R-n is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the heterogeneity of their distribution. For a Delone set X, let N-X (T) count the number of translation-inequivalent patches of radius T in X and let M-X (T) be the minimum radius such that every closed ball of radius M-X(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a gap in the spectrum of possible growth rates between being bounded and having linear growth, and that having sufficiently slow linear growth is equivalent to X being an ideal crystal. Explicitly, for N-X (T), if R is the covering radius of X then either N-X (T) is bounded or N-X (T) greater than or equal to T/2R for all T > 0. The constant 1/2R in this bound is best possible in all dimensions. For M-X(T), either M-X(T) is bounded or M-X(T) greater than or equal to T/3 for all T > 0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M-X(T) greater than or equal to c(n)T for all T > 0, for a certain constant c(n) which depends on the dimension n of X and is > 1/3 when n > 1.
Resumo:
Models for the occurrence of the vibrational instability during rolling known as third octave chatter are presented and discussed. An analysis of rolling mill chatter was performed for the purpose of identifying characteristics of the vibrations and to determine any dependency on the rolling schedule. In particular, a stability criterion for the critical rolling speed is used to predict the maximum rolling speed without chatter instability on schedules from a 5 stand tandem mill rolling thin steel product. The results correlate well with measurements of critical speed occurring on the mill using a vibration monitor: This research provides significant insights into the chatter phenomena and has been used to investigate control methods for suppression of the instability.
Resumo:
Three experiments investigated the effect of complexity on children's understanding of a beam balance. In nonconflict problems, weights or distances varied, while the other was held constant. In conflict items, both weight and distance varied, and items were of three kinds: weight dominant, distance dominant, or balance (in which neither was dominant). In Experiment 1, 2-year-old children succeeded on nonconflict-weight and nonconflict-distance problems. This result was replicated in Experiment 2, but performance on conflict items did not exceed chance. In Experiment 3, 3- and 4-year-olds succeeded on all except conflict balance problems, while 5- and 6-year-olds succeeded on all problem types. The results were interpreted in terms of relational complexity theory. Children aged 2 to 4 years succeeded on problems that entailed binary relations, but 5- and 6-year-olds also succeeded on problems that entailed ternary relations. Ternary relations tasks from other domains-transitivity and class inclusion-accounted for 93% of the age-related variance in balance scale scores. (C) 2002 Elsevier Science (USA).
Resumo:
Two experiments tested predictions from a theory in which processing load depends on relational complexity (RC), the number of variables related in a single decision. Tasks from six domains (transitivity, hierarchical classification, class inclusion, cardinality, relative-clause sentence comprehension, and hypothesis testing) were administered to children aged 3-8 years. Complexity analyses indicated that the domains entailed ternary relations (three variables). Simpler binary-relation (two variables) items were included for each domain. Thus RC was manipulated with other factors tightly controlled. Results indicated that (i) ternary-relation items were more difficult than comparable binary-relation items, (ii) the RC manipulation was sensitive to age-related changes, (iii) ternary relations were processed at a median age of 5 years, (iv) cross-task correlations were positive, with all tasks loading on a single factor (RC), (v) RC factor scores accounted for 80% (88%) of age-related variance in fluid intelligence (compositionality of sets), (vi) binary- and ternary-relation items formed separate complexity classes, and (vii) the RC approach to defining cognitive complexity is applicable to different content domains. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).