838 resultados para Modeling Rapport Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il est avant-tout question, dans ce mémoire, de la modélisation du timbre grâce à des algorithmes d'apprentissage machine. Plus précisément, nous avons essayé de construire un espace de timbre en extrayant des caractéristiques du son à l'aide de machines de Boltzmann convolutionnelles profondes. Nous présentons d'abord un survol de l'apprentissage machine, avec emphase sur les machines de Boltzmann convolutionelles ainsi que les modèles dont elles sont dérivées. Nous présentons aussi un aperçu de la littérature concernant les espaces de timbre, et mettons en évidence quelque-unes de leurs limitations, dont le nombre limité de sons utilisés pour les construire. Pour pallier à ce problème, nous avons mis en place un outil nous permettant de générer des sons à volonté. Le système utilise à sa base des plug-ins qu'on peut combiner et dont on peut changer les paramètres pour créer une gamme virtuellement infinie de sons. Nous l'utilisons pour créer une gigantesque base de donnée de timbres générés aléatoirement constituée de vrais instruments et d'instruments synthétiques. Nous entrainons ensuite les machines de Boltzmann convolutionnelles profondes de façon non-supervisée sur ces timbres, et utilisons l'espace des caractéristiques produites comme espace de timbre. L'espace de timbre ainsi obtenu est meilleur qu'un espace semblable construit à l'aide de MFCC. Il est meilleur dans le sens où la distance entre deux timbres dans cet espace est plus semblable à celle perçue par un humain. Cependant, nous sommes encore loin d'atteindre les mêmes capacités qu'un humain. Nous proposons d'ailleurs quelques pistes d'amélioration pour s'en approcher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O processamento de voz tornou-se uma tecnologia cada vez mais baseada na modelagem automática de vasta quantidade de dados. Desta forma, o sucesso das pesquisas nesta área está diretamente ligado a existência de corpora de domínio público e outros recursos específicos, tal como um dicionário fonético. No Brasil, ao contrário do que acontece para a língua inglesa, por exemplo, não existe atualmente em domínio público um sistema de Reconhecimento Automático de Voz (RAV) para o Português Brasileiro com suporte a grandes vocabulários. Frente a este cenário, o trabalho tem como principal objetivo discutir esforços dentro da iniciativa FalaBrasil [1], criada pelo Laboratório de Processamento de Sinais (LaPS) da UFPA, apresentando pesquisas e softwares na área de RAV para o Português do Brasil. Mais especificamente, o presente trabalho discute a implementação de um sistema de reconhecimento de voz com suporte a grandes vocabulários para o Português do Brasil, utilizando a ferramenta HTK baseada em modelo oculto de Markov (HMM) e a criação de um módulo de conversão grafema-fone, utilizando técnicas de aprendizado de máquina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante los últimos años ha aumentado la presencia de personas pertenecientes al mundo de la política en la red debido a la proliferación de las redes sociales, siendo Twitter la que mayor repercusión mediática tiene en este ámbito. El estudio del comportamiento de los políticos en Twitter y de la acogida que tienen entre los ciudadanos proporciona información muy valiosa a la hora de analizar las campañas electorales. De esta forma, se puede estudiar la repercusión real que tienen sus mensajes en los resultados electorales, así como distinguir aquellos comportamientos que tienen una mayor aceptación por parte de la la ciudadaná. Gracias a los avances desarrollados en el campo de la minería de textos, se poseen las herramientas necesarias para analizar un gran volumen de textos y extraer de ellos información de utilidad. Este proyecto tiene como finalidad recopilar una muestra significativa de mensajes de Twitter pertenecientes a los candidatos de los principales partidos políticos que se presentan a las elecciones autonómicas de Madrid en 2015. Estos mensajes, junto con las respuestas de otros usuarios, se han analizado usando algoritmos de aprendizaje automático y aplicando las técnicas de minería de textos más oportunas. Los resultados obtenidos para cada político se han examinado en profundidad y se han presentado mediante tablas y gráficas para facilitar su comprensión.---ABSTRACT---During the past few years the presence on the Internet of people related with politics has increased, due to the proliferation of social networks. Among all existing social networks, Twitter is the one which has the greatest media impact in this field. Therefore, an analysis of the behaviour of politicians in this social network, along with the response from the citizens, gives us very valuable information when analysing electoral campaigns. This way it is possible to know their messages impact in the election results. Moreover, it can be inferred which behaviours have better acceptance among the citizenship. Thanks to the advances achieved in the text mining field, its tools can be used to analyse a great amount of texts and extract from them useful information. The present project aims to collect a significant sample of Twitter messages from the candidates of the principal political parties for the 2015 autonomic elections in Madrid. These messages, as well as the answers received by the other users, have been analysed using machine learning algorithms and applying the most suitable data mining techniques. The results obtained for each politician have been examined in depth and have been presented using tables and graphs to make its understanding easier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rápida evolução do hardware demanda uma evolução contínua dos compiladores. Um processo de ajuste deve ser realizado pelos projetistas de compiladores para garantir que o código gerado pelo compilador mantenha uma determinada qualidade, seja em termos de tempo de processamento ou outra característica pré-definida. Este trabalho visou automatizar o processo de ajuste de compiladores por meio de técnicas de aprendizado de máquina. Como resultado os planos de compilação obtidos usando aprendizado de máquina com as características propostas produziram código para programas cujos valores para os tempos de execução se aproximaram daqueles seguindo o plano padrão utilizado pela LLVM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tema 6. Text Mining con Topic Modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspirados por las estrategias de detección precoz aplicadas en medicina, proponemos el diseño y construcción de un sistema de predicción que permita detectar los problemas de aprendizaje de los estudiantes de forma temprana. Partimos de un sistema gamificado para el aprendizaje de Lógica Computacional, del que se recolectan masivamente datos de uso y, sobre todo, resultados de aprendizaje de los estudiantes en la resolución de problemas. Todos estos datos se analizan utilizando técnicas de Machine Learning que ofrecen, como resultado, una predicción del rendimiento de cada alumno. La información se presenta semanalmente en forma de un gráfico de progresión, de fácil interpretación pero con información muy valiosa. El sistema resultante tiene un alto grado de automatización, es progresivo, ofrece resultados desde el principio del curso con predicciones cada vez más precisas, utiliza resultados de aprendizaje y no solo datos de uso, permite evaluar y hacer predicciones sobre las competencias y habilidades adquiridas y contribuye a una evaluación realmente formativa. En definitiva, permite a los profesores guiar a los estudiantes en una mejora de su rendimiento desde etapas muy tempranas, pudiendo reconducir a tiempo los posibles fracasos y motivando a los estudiantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’évolution continue des besoins d’apprentissage vers plus d’efficacité et plus de personnalisation a favorisé l’émergence de nouveaux outils et dimensions dont l’objectif est de rendre l’apprentissage accessible à tout le monde et adapté aux contextes technologiques et sociaux. Cette évolution a donné naissance à ce que l’on appelle l'apprentissage social en ligne mettant l'accent sur l’interaction entre les apprenants. La considération de l’interaction a apporté de nombreux avantages pour l’apprenant, à savoir établir des connexions, échanger des expériences personnelles et bénéficier d’une assistance lui permettant d’améliorer son apprentissage. Cependant, la quantité d'informations personnelles que les apprenants divulguent parfois lors de ces interactions, mène, à des conséquences souvent désastreuses en matière de vie privée comme la cyberintimidation, le vol d’identité, etc. Malgré les préoccupations soulevées, la vie privée en tant que droit individuel représente une situation idéale, difficilement reconnaissable dans le contexte social d’aujourd’hui. En effet, on est passé d'une conceptualisation de la vie privée comme étant un noyau des données sensibles à protéger des pénétrations extérieures à une nouvelle vision centrée sur la négociation de la divulgation de ces données. L’enjeu pour les environnements sociaux d’apprentissage consiste donc à garantir un niveau maximal d’interaction pour les apprenants tout en préservant leurs vies privées. Au meilleur de nos connaissances, la plupart des innovations dans ces environnements ont porté sur l'élaboration des techniques d’interaction, sans aucune considération pour la vie privée, un élément portant nécessaire afin de créer un environnement favorable à l’apprentissage. Dans ce travail, nous proposons un cadre de vie privée que nous avons appelé « gestionnaire de vie privée». Plus précisément, ce gestionnaire se charge de gérer la protection des données personnelles et de la vie privée de l’apprenant durant ses interactions avec ses co-apprenants. En s’appuyant sur l’idée que l’interaction permet d’accéder à l’aide en ligne, nous analysons l’interaction comme une activité cognitive impliquant des facteurs contextuels, d’autres apprenants, et des aspects socio-émotionnels. L'objectif principal de cette thèse est donc de revoir les processus d’entraide entre les apprenants en mettant en oeuvre des outils nécessaires pour trouver un compromis entre l’interaction et la protection de la vie privée. ii Ceci a été effectué selon trois niveaux : le premier étant de considérer des aspects contextuels et sociaux de l’interaction telle que la confiance entre les apprenants et les émotions qui ont initié le besoin d’interagir. Le deuxième niveau de protection consiste à estimer les risques de cette divulgation et faciliter la décision de protection de la vie privée. Le troisième niveau de protection consiste à détecter toute divulgation de données personnelles en utilisant des techniques d’apprentissage machine et d’analyse sémantique.