973 resultados para Model Driven Engineering
Resumo:
The authors would like to thank their supporters. New Zealand Earthquake Commission (EQC) Research Foundation provided financial support for experimental work (Grant No. UNI/578). New Zealand Transport Agency (NZTA) provided access to the bridge. Piotr Omenzetter’s work within the LRF Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research. Ge-Wei Chen’s doctoral study is supported by China Scholarship Council (CSC) (Grant No. 2011637065).
Resumo:
Peer reviewed
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Con la crescita in complessità delle infrastrutture IT e la pervasività degli scenari di Internet of Things (IoT) emerge il bisogno di nuovi modelli computazionali basati su entità autonome capaci di portare a termine obiettivi di alto livello interagendo tra loro grazie al supporto di infrastrutture come il Fog Computing, per la vicinanza alle sorgenti dei dati, e del Cloud Computing per offrire servizi analitici complessi di back-end in grado di fornire risultati per milioni di utenti. Questi nuovi scenarii portano a ripensare il modo in cui il software viene progettato e sviluppato in una prospettiva agile. Le attività dei team di sviluppatori (Dev) dovrebbero essere strettamente legate alle attività dei team che supportano il Cloud (Ops) secondo nuove metodologie oggi note come DevOps. Tuttavia, data la mancanza di astrazioni adeguata a livello di linguaggio di programmazione, gli sviluppatori IoT sono spesso indotti a seguire approcci di sviluppo bottom-up che spesso risulta non adeguato ad affrontare la compessità delle applicazione del settore e l'eterogeneità dei compomenti software che le formano. Poichè le applicazioni monolitiche del passato appaiono difficilmente scalabili e gestibili in un ambiente Cloud con molteplici utenti, molti ritengono necessaria l'adozione di un nuovo stile architetturale, in cui un'applicazione dovrebbe essere vista come una composizione di micro-servizi, ciascuno dedicato a uno specifica funzionalità applicativa e ciascuno sotto la responsabilità di un piccolo team di sviluppatori, dall'analisi del problema al deployment e al management. Poichè al momento non si è ancora giunti a una definizione univoca e condivisa dei microservices e di altri concetti che emergono da IoT e dal Cloud, nè tantomento alla definzione di linguaggi sepcializzati per questo settore, la definzione di metamodelli custom associati alla produzione automatica del software di raccordo con le infrastrutture potrebbe aiutare un team di sviluppo ad elevare il livello di astrazione, incapsulando in una software factory aziendale i dettagli implementativi. Grazie a sistemi di produzione del sofware basati sul Model Driven Software Development (MDSD), l'approccio top-down attualmente carente può essere recuperato, permettendo di focalizzare l'attenzione sulla business logic delle applicazioni. Nella tesi viene mostrato un esempio di questo possibile approccio, partendo dall'idea che un'applicazione IoT sia in primo luogo un sistema software distribuito in cui l'interazione tra componenti attivi (modellati come attori) gioca un ruolo fondamentale.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.
Resumo:
Part 11: Reference and Conceptual Models
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Every construction process (whatever buildings, machines, software, etc.) requires first to make a model of the artifact that is going to be built. This model should be based on a paradigm or meta-model, which defines the basic modeling elements: which real world concepts can be represented, which relationships can be established among them, and son on. There also should be a language to represent, manipulate and think about that model. Usually this model should be redefined at various levels of abstraction. So both, the paradigm an the language, must have abstraction capacity. In this paper I characterize the relationships that exist between these concepts: model, language and abstraction. I also analyze some historical models, like the relational model for databases, the imperative programming model and the object oriented model. Finally, I remark the need to teach that model-driven approach to students, and even go further to higher level models, like component models o business models.
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
Includes index.
Resumo:
A new excitation model for the numerical solution of field integral equation (EFIE) applied to arbitrarily shaped monopole antennas fed by coaxial lines is presented. This model yields a stable solution for the input impedance of such antennas with very low numerical complexity and without the convergence and high parasitic capacitance problems associated with the usual delta gap excitation.
Resumo:
A case sensitive intelligent model editor has been developed for constructing consistent lumped dynamic process models and for simplifying them using modelling assumptions. The approach is based on a systematic assumption-driven modelling procedure and on the syntax and semantics of process,models and the simplifying assumptions.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields