942 resultados para Mode of action
Resumo:
The present study revealed the importance of marine actinomycetes as a potent source of bio active secondary metabolites. The selected isolates were capable of protecting Peaneus monodon against WSSV infection. They also proved to be inhibitory to vibrios and is a rich pool of hydrolytic enzymes. Their capacity to proliferate in saline environments and their property of non-pathogenicity to prawns makes them good candidates to be applied as probionts in penaeid shrimp aquaculture. They also enhanced the immune status of shrimps challenged with WSSV and act as a good source of antioxidants. Exploitation of the potential for the prophylactic and therapeutic measures in aquatic animal health management would be highly rewarding. This work is a preliminary study targeting marine actinomycetes as a source of antiviral compounds and as probionts in Penaeus monodon culture systems. More work is needed to understand the nature and mode of action of the bioactive compound, the various aspects of immune and antioxidant responses under challenge and when exposed to pro active treatments, and the dose and frequency of application of such compounds under rearing conditions.
Resumo:
This study shows that the disease resistance and survival rate of Penaeus monodon in a larval rearing systems can be enhanced by supplementing with antagonistic or non-antagonistic probiotics. The antagonistic mode of action of Pseudomonas MCCB 102 and MCCB 103 against vibrios was demonstrated in larval mesocosm with cultures having su⁄cient concentration of antagonistic compounds in their culture supernatant. Investigations on the antagonistic properties of Bacillus MCCB 101, Pseudomonas MCCB 102 and MCCB 103 and Arthrobacter MCCB 104 against Vibrio harveyi MCCB111under in vitro conditions revealed that Pseudomonas MCCB 102 and MCCB 103 were inhibitory to the pathogen.These inhibitory propertieswere further con¢rmed in the larval rearing systems of P. monodon. All these four probionts signi¢cantly improved larval survival in long-term treatments as well as when challengedwith a pathogenic strain ofV. harveyiMCCB111. We could demonstrate that Pseudomonas MCCB 102 andMCCB103 accorded disease resistance and a higher survival rate in P. monodon larval rearing systems throughactive antagonism of vibrios,whereas Bacillus MCCB 101 and Arthrobacter MCCB 104 functioned as probiotics through immunostimulatory and digestive enzyme-supporting modes of action.
Resumo:
White spot syndrome virus (WSSV), the most contagious pathogen of cultured shrimp, causes mass mortality, leading to huge economic loss to the shrimp industry. The lack of effective therapeutic or prophylactic measures has aggravated the situation, necessitating the development of antiviral agents. With this objective, the antiviral activity in the aqueous extract of a mangrove plant Ceriops tagal in Penaeus monodon was evaluated. The Ceriops tagal aqueous extract (CTAE) was non-toxic to shrimps at 50 mg/ml when injected intramuscularly at a dosage of 10 lL/animal (0.5 mg/animal) and showed a protective effect against WSSV at 30 mg/ml when mixed with WSSV suspension at a 1:1 ratio. When the extract was administered along with the diet and the animals were challenged orally, there was a dose-dependent increase in survival, culminating in 100 % survival at a concentration of 500 mg/kg body weight/day. Neither hypertrophied nuclei nor the viral envelope protein VP28 could be demonstrated in surviving shrimps using histology and indirect immunofluorescence histochemistry (IIFH), respectively. To elucidate the mode of action, the temporal expression of WSSV genes and shrimp immune genes, including antimicrobial peptides, was attempted. None of the viral genes were found to be expressed in shrimps that were fed with the extract and challenged or in those that were administered CTAE-exposed WSSV. The overall results suggest that the aqueous extract from C. tagal can protect P. monodon from white spot syndrome virus infection.
Resumo:
A regulator imposing “sales restrictions” on firms competing in oligopolistic markets may enhance quality provision by the firms. Moreover, for most restrictions levels, the impact on quality selection is invariant to the mode of competition
Resumo:
La soca EPS125 ha mostrat ser un efectiu agent de control biològic de diferents patògens fúngics de postcollita en diferents fruits. Degut a la seva elevada eficàcia, es va plantejar desenvolupar aquesta soca comercialment i per aquest motiu en el present treball es plantejà complementar la informació necessària pel seu registre. D'acord amb els resultats obtinguts mitjançant proves fenotípiques i genotípiques, la soca EPS125 queda inclosa dins l'espècie Pantoea agglomerans (Enterobacter agglomerans-Erwinia herbicola). En relació a la utilització de fonts de carboni, en el perfil i contingut d'àcids grassos cel·lulars i en el polimorfisme en la longitud dels fragments de macrorestricció genòmica (MRFLP), la soca EPS125 mostrà trets característics que la diferencien d'altres soques. Els dos marcadors moleculars (125.2 i 125.3) específics per la soca EPS125 dissenyats en el present treball mostraren ser semiespecífics per la seva detecció mitjançant la tècnica PCR i Real Time PCR. Quedant pendent l'anàlisi d'especificitat de l'ús combinat dels dos marcadors moleculars en una reacció PCR multiplex. P. agglomerans EPS125 ha mostrat ser molt efectiva en el control de Penicillium expansum en poma amb una dosi efectiva mitjana de 2.7x105 a 7x105 ufc/ml, i una ratio de 25-101 cèl·lules de la soca EPS125 per inactivar una espora del patogen segons el model de saturació hiperbòlica. Segons les aproximacions fenotípiques i estudis genotípics realitzats, sembla que els mecanismes de biocontrol utilitzats per la soca EPS125 contra P. expansum en poma estan directament relacionats amb la capacitat de formació de biofilm per aquesta soca.
Resumo:
This PhD thesis is the result of the combination of experimental and computational techniques with the aim of understanding the mechanism of action of de novo cyclic decapeptides with high antimicrobial activity. By experimental techniques the influence of the replacement of the phenylalanine for tryptophan residue in their antimicrobial activity was tested and the stability in human serum was also analyzed, in order to evaluate their potential therapeutic application as antitumor agents. On the other hand, the interaction amongst the peptide BPC194 c(KKLKKFKKLQ), the best candidate from the whole library of cyclic peptides, and a model anionic membrane was simulated. The results showed a structure-function relationship derived from the stable conformation of the peptides involved in the membrane permeabilization. As a result, a rational design was performed being BPC490 the peptide with best antimicrobial activity compared with the best active peptide from the original library.
Resumo:
Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris were exposed to 250, 250 and 350 mg kg(-1) Cu respectively in Cu(NO3)(2(aq)) amended soil for 28 d. Earthworms were then depurated for 24 to 72 h, digested and analysed for Cu and Ti or, subsequent to depuration were dissected to remove any remaining soil particles from the alimentary canal and then digested and analysed. This latter treatment proved impossible for E. andrei due to its small size. Regardless of depuration time, soil particles were retained in the alimentary canal of L. rubellus and L. terrestris. Tissue concentration determinations indicate that E. andrei should be depurated for 24 h, L. rubellus for 48 h and L. terrestris should be dissected. Ti was bioaccumulated and therefore could not be used as an inert tracer to determine mass of retained soil. Calculations indicate that after 28 d earthworms were still absorbing Cu from soil. (C) 2006 Elsevier Ltd. All rights reserved.