371 resultados para Mn2
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon
Resumo:
The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the JandaÃra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of JandaÃra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the JandaÃra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, chitosan was used as a coating of pure perlite in order to increase the accessibility of the groups OH- e NH2+the adsorptionof ions Mn2+ e Zn2+.The characterization results of the expanded perlite classified as microporous and whose surface area 3,176 m2 g-1after the change resulted in 4,664 m2g-1.From the thermogravimetry(TG) it was found that the percentage of coating was34,3%.The infrared analysis can prove the presence of groups Si-OH, Si-O e Al-O-Siresulting from the perlite and C=O, NH2and OH characterization of chitosan. The experiments on experiments on the adsorption of Mn and Zn were performed in the concentration range of10 a 50 mgL-1and the adsorption capacity inpH 5,8 e 5,2 was 19,49 and 23,09 mgg-1to 25 oC,respectively.The adsorption data were best fitted to Langmuir adsorption model to Langmuir adsorption model for both metalionsisindicative of monolayer adsorption. The kinetics of adsorption were calculated from the equation of Lagergren fitting the model pseudo-second-order for all initial concentrations, suggesting that adsorption of ions Mn2+ and Zn2+ follows the kinetics of pseudo-second-order and whose constant Speedk2(g/mg.min) are 0,105 e 3,98 and capacity and maximum removal qe 4,326 e 3,348,respectively.In this study we used a square wave voltammetry cathodic stripping voltammetry to quantify the adsorbed ions, and the working electrode glassy carbon, reference electrode silver / silver chloride and a platinum auxiliary electrode. The attainment of the peaks corresponding to ions Mn2+ and Zn2+ was evaluated in and electrochemical cell with a capacity of 30 mL using a buffer system (Na2HPO4/NaH2PO4)at pH 4 and was adjusted with solutionsH3PO4 0,1molL-1and NaOH 0,1 molL-1and addition of the analyte has been a cathodic peak in- 0,873 Vand detection limit of2,55x10-6molL-1para Zn.The dough used for obtaining the adsorption isotherm was 150 mg and reached in 120 min time of equilibrium for both metal ions.The maximum adsorption for 120 min with Mn concentration 20 mgL-1 and Zn 10 mgL-1,was91, 09 e 94, 34%, respectively
Resumo:
The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data
Resumo:
A strain of Aspergillus versicolor produces a xylanolytic complex containing two components, the minor component being designated xylanase II. The highest production of xylanase II was observed in cultures grown for 5 days in 1% wheat bran as carbon source, at pH 6.5. Xylanase II was purified 28-fold by DEAE-Sephadex and HPLC GF-5 10 gel filtration. Xylanase II was a monomeric glycoprotein, exhibiting a molecular mass of 32 kDa with 14.1% of carbohydrate content. Optimal pH and temperature values for the enzyme activity were about 6.0-7.0 and 55 degreesC, respectively. Xylanase II thermoinactivation at 50degreesC showed a biphasic curve. The ions Hg2+, Cu2+ and the detergent SDS were strong inhibitors, while Mn2+ ions and dithiothreitol were stimulators of the enzyme activity. The enzyme was specific for xylans, showing higher specific activity on birchwood xylan. The Michaelis-Menten constant (K-m) for birchwood xylan was estimated to be 2.3 mg ml(-1) while maximal velocity (V-max) was 233.1 mumol mg(-1) min(-1) of protein. The hydrolysis of oat spell xylan released only xylooligosaccharides. Published by Elsevier Ltd.
Resumo:
Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 mu M MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations Zip to 0.1 mu M were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K-0.5 = 8.5 nM. Above 0.1 mu M Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to I mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K-0.5 values were significantly affected (from 4.4 mu M to 38.0 mu M). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented. (C) 1997 Elsevier B.V.
Resumo:
A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mm CaCl2. The enzyme activity increased in the presence of Co2+, Ba2+, and Mn2+. Using maltodextrin as substrate, the K-m and K-cat were 1.65 mg/mL and 347.9 mu mol/mg.min, respectively.
Resumo:
The authors have studied the chromatographic behavior of parenteral preparations for pediatric use containing inorganic cations. After separation and identification by thin-layer chromatography, Mn2+, Zn2+, and Cu2+ were analyzed by a method based on reaction with an appropriate reagent and extraction with an organic solvent which yielded elution and preconcentration, resulting in an appropriate solution for colorimetric quantitation. Cr3+ cation was determined by atomic absorption spectrophotometry after appropriate chromatographic separation, using microcrystalline cellulose (adsorbent) and an acetone:water:hydrochloric acid mixture (80:5:8) as the mobile phase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work is to report on the luminescence properties of BaZnSiO4 activated by Eu3+ and Mn2+ ions. Doped and undoped powder samples were prepared by solid-state reaction starting from oxides and carbonates or Ba2SiO4:Eu3+ and Zn2SiO4:Mn2+ precursors. X-ray diffraction powder data, IR vibrational, and UV-vis luminescence spectroscopies were carried out. Results showed that doped and undoped samples from both types of precursors have the same structure and crystallize with a superstructure of hexagonal kalsilite. Vibrational spectroscopy has confirmed the formation of a silicate group, which outlines differences between products and silicate precursors. The observed luminescence assigned to Eu3+ and Mn2+ transitions covered most parts of the visible spectrum, an important requirement for phosphors in fluorescent low-pressure mercury vapor lamps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electron Paramagnetic Resonance (EPR) spectra have been obtained at room temperature and at X-band in powders of SnO2 doped with Mn from 0.3 to 10% and submitted to heat treatment from 500 to 900 °C. Mn ions are probably located at particle surfaces as Mn2+, evidenced by its single EPR line which narrows by the exchange interaction effect due to particle growth observed by the BET technique. In samples doped above 1% formation Of Mn3O4 is detected on particle surfaces and a small quantity of Mn is thermally diffused into the bulk as Mn4+. Powders compacted and sintered at 1300 °C confirmed that Mn2+ ions remain at grain boundaries acting as densifying agent.
Resumo:
This work describes the characterization of the [Mn2 IV,IVO2(terpy)2(H2O)2]4+ complex in aqueous solution by UV-vis spectrophotometry, cyclic voltammetry, and linear sweep voltammetry with a rotating disk electrode. The pH effect, potential scan rate, effect of perfluorosulfonate polymer, and anion of supporting electrode on the electrochemical behavior of the modified electrode for better performance were investigated. The potential peak of the modified electrode was linearly dependent upon the ratio [ionic charge]/[ionic radius]. The modified electrode exerted an electrocatalytic effect on dopamine oxidation in aqueous solution with a decrease in the overpotential compared with the unmodified glassy carbon electrode. This way, the modified electrode showed an enzymatic biomimicking behavior. Tafel plot analyses were used to elucidate the kinetics and mechanism of dopamine oxidation. © 2013 Springer Science+Business Media New York.