971 resultados para Mixed oxides. Combustion by microwave. Alternatives fuels
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
In this work, we have examined the activity and selectivity of new catalysts for the single-stage production of methyl isobutyl ketone (MIBK, 4- methyl-2-pentanone) from acetone (both in liquid and gas phase), using a fixed bed reactor operated in the temperature range between 373 and 473 K. The main reaction pathways for the synthesis of MIBK from acetone are given in Fig.1. The first step is the self condensation of acetone to diacetone alcohol (DAA, 4-hydroxy-4-methyl-2-pentanone); the second step is the dehydration of DAA to mesityl oxide (MO, 4-methyl-3-penten-2-one); the final step is the selective hydrogenation of the carbon–carbon double bond of MO to form MIBK. The most commonly observed side reactions are over-condensations and unselective hydrogenations (also shown in Fig.1). Two types of catalysts were studied: i)Pd supported on MgO-SiO2 mixed oxides with ratio of Mg to Si, synthetized using Ohnishi’s method and ii)Pd supported on alumina doped with 5% or 10% of MgO. The different Mg-Si and Mg-Al catalysts were characterized by different techniques (XRD, BET, SEM, NH3-TPD and CO2-TPD) and tested under different conditions in the condensation of acetone to diacetone alcohol and its dehydration to mesityl oxide to enhance the activity. Palladium was chosen as metal component, and its hydrogenation activity was studied. A low hydrogenation activity negatively affects the acetone conversion and promotes the production of mesityl oxide. Hydrogenation conditions being too severe may favor the unwanted hydrogenation of acetone to 2-propanol and of MIBK to methyl isobutyl carbinol (MIBC, 4-methyl-2-pentanol) but this effect is less detrimental to the MIBK selectivity than an unsufficient hydrogenation activity.
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.
Resumo:
Pure hydrogen production from methane is a multi-step process run on a large scale for economic reasons. However, hydrogen can be produced in a one-pot continuous process for small scale applications, namely Low Temperature Steam Reforming. Here, Steam Reforming is carried out in a reactor whose walls are composed by a membrane selective toward hydrogen. Pd is the most used membrane material due to its high permeability and selectivity. However, Pd deteriorates at temperatures higher than 500°C, thus the operative temperature of the reaction has to be lowered. However, the employment of a membrane reactor may allow to give high yields thanks to hydrogen removal, which shifts the reaction toward the products. Moreover, pure hydrogen is produced. This work is concentrated on the synthesis of a catalytic system and the investigation of its performances in different processes, namely oxy-reforming, steam reforming and water gas shift, to find appropriate conditions for hydrogen production in a catalytic membrane reactor. The catalyst supports were CeZr and Zr oxides synthesized by microemulsion, impregnated with different noble metals. Pt, Rh and PtRh based catalysts were tested in the oxy reforming process at 500°C, where Rh on CeZr gave the most interesting results. On the opposite, the best performances in low temperature steam reforming were obtained with Rh impregnated on Zr oxide. This catalyst was selected to perform low temperature steam reforming in a Pd membrane reactor. The hydrogen removal given by the membrane allowed to increase the methane conversion over the equilibrium of a classical fixed bed reactor thanks to an equilibrium shift effect. High hydrogen production and recoveries were also obtained, and no other compound permeated through the membrane which proved to be hydrogen selective.
Resumo:
The study of the combined reforming (CR) process to produce synthesis gas (CO + H2) feeding Clean Biogas (CB, biogas in which the main pollutants have been removed) has been performed on Ni-based bimetallic catalysts promoted by small amounts of Rh or Cu, prepared by incipient wetness impregnation or coprecipitation of different precursors on mixed oxides Mg/Al/O obtained by calcination of hydrotalcite-type (Ht) coprecipitates. It has been observed as the formation of bimetallic particles promoted the catalytic activity and limited the deactivation phenomena, allowing to operate at lower temperature and feeding lower amounts of steam. By this way, it was possible to define the best promoter, to tune its amount and the formation of the bimetallic nanoparticles. Finally, it has been simulated the scale-up of the CR process to industrial level, evaluating the feasibility and economic degree by comparison with the industrially exploited Autothermal reforming (ATR) process, evidencing the possible scalability and the advantages at environmental and energetic level in comparison to the current reforming processes.
Resumo:
This study examined the influence of three polymerization cycles (1: heat cure - long cycle; 2: heat cure - short cycle; and 3: microwave activation) on the linear dimensions of three denture base resins, immediately after deflasking, and 30 days after storage in distilled water at 37± 2ºC. The acrylic resins used were: Clássico, Lucitone 550 and Acron MC. The first two resins were submitted to all three polymerization cycles, and the Acron MC resin was cured by microwave activation only. The samples had three marks, and dimensions of 65 mm in length, 10 mm in width and 3 mm in thickness. Twenty-one test specimens were fabricated for each combination of resin and cure cycle, and they were submitted to three linear dimensional evaluations for two positions (A and B). The changes were evaluated using a microscope. The results indicated that all acrylic resins, regardless of the cure cycle, showed increased linear dimension after 30 days of storage in water. The composition of the acrylic resin affected the results more than the cure cycles, and the conventional acrylic resin (Lucitone 550 and Clássico) cured by microwave activation presented similar results when compared with the resin specific for microwave activation.
Resumo:
The replacement of conventional synthetic films and coatings by biodegradable alternatives reduces the use of non-renewable resources and waste disposal problems. Considering that Portugal is a major producer of leather, and consequently a large producer of related wastes, in this research, bovine hair was tested for the production of biodegradable films directly by thermo-compression, allowing waste valorisation and reduction of environmental pollution. The aim of this study was to determine the influence of the different pre-treatments performed by two processes (removal by mechanical action and removal by chemical process), applied to bovine hair, in order to obtain a biodegradable film with appropriate properties. Mechanical properties for these films were evaluated, namely strain at break, stress at break and Young modulus. Additionally colour, solubility and swelling in water were also studied. The mechanical removal hair only produced films with Na2S treatment. Chemical removed hair (immunization) depends of the pre-treatment and the degreasing with petroleum ether or sodium sulphide pre-treatment leads better mechanical properties. The results obtained indicated that the pre-treatments have an important role in the final properties of biodegradable films.
Resumo:
Na sociedade actual, é cada vez mais difícil desassociar o ambiente financeiro do ambiente social, tendo o primeiro influência directa ou indirecta em praticamente todos os aspectos da sociedade. A esta influência está associada a vasta quantidade de informação e serviços financeiros que possibilitam uma melhor compreensão do ambiente socioeconómico actual, permitindo também o estudo das evoluções e das dinâmicas dos mercados financeiros. Este trabalho refere-se ao estudo e comparação de algumas ferramentas disponíveis para a análise dinâmica e tentativa de previsão de alguns índices de bolsa escolhidos. Tais métodos a estudar são modelos clássicos como o Autoregressivo, Média Móvel e o Modelo Misto apresentado por Box e Jenkins. São também propostos dois métodos que tentam distanciar-se dos métodos tradicionais por apenas considerarem para a sua previsão os momentos semelhantes ao momento actual que se tenta prever, ao invés de considerar todo o espectro dos dados disponíveis, tal como os métodos clássicos referidos anteriormente.
Resumo:
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (SPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of SPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of SPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
Because polycyclic aromatic hydrocarbons (PAHs) have been proven to be toxic, mutagenic, and/or carcinogenic, there is widespread interest in analyzing and evaluating exposure to PAHs in atmospheric environments influenced by different emission sources. Because traffic emissions are one of the biggest sources of fine particles, more information on carcinogenic PAHs associated with fine particles needs to be provided. Aiming to further understand the impact of traffic particulate matter (PM) on human health, this study evaluated the influence of traffic on PM10 (PM with aerodynamic diameter <10 µm) and PM2.5 (PM with aerodynamic diameter <2.5 µm), considering their concentrations and compositions in carcinogenic PAHs. Samples were collected at one site influenced by traffic emissions and at one reference site using lowvolume samplers. Analysis of PAHs was performed by microwave-assisted extraction combined with liquid chromatography (MAE-LC); 17 PAHs, including 9 carcinogenic ones, were quantified. At the site influenced by traffic emissions, PM10 and PM2.5 concentrations were, respectively, 380 and 390% higher than at the background site. When influenced by traffic emissions, the total concentration of nine carcinogenic compounds (naphthalene, chrysene, benzo(a)anthracene, benzo(b) fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and dibenzo(a,l)pyrene) was increased by 2400 and 3000% in PM10 and PM2.5, respectively; these nine carcinogenic compounds represented 68 and 74% of total PAHs (ƩPAHs) for PM10 and PM2.5, respectively. All PAHs, including the carcinogenic compounds, were mainly present in fine particles. Considering the strong influence of these fine particles on human health, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
The antioxidant activity and phenolic composition of brewer's spent grain (BSG) extracts obtained by microwave-assisted extraction from twomalt types (light and darkmalts) were investigated. The total phenolic content (TPC) and antioxidant activity among the light BSG extracts (pilsen, melano, melano 80 and carared)were significantly different (p b 0.05) compared to dark extracts (chocolate and black types), with the pilsen BSG showing higher TPC (20 ± 1 mgGAE/g dry BSG). In addition, the antioxidant activity assessed by 2,2-diphenyl- 1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and deoxyribose assays decreased as a result of increasing kilning temperatures in the following order: pilsen N melano N melano 80 N carared N chocolate N black. HPLC-DAD/ESI-MS/MS analysis indicated the presence of phenolic acids, such as ferulic, p-coumaric and syringic acids, as well as several isomeric ferulate dehydrodimers and one dehydrotrimer. Chocolate and black extracts, obtained frommalts submitted to the highest kilning temperatures, showed the lowest levels of ferulic and p-coumaric acids. These results suggested that BSG extracts from pilsen malt might be used as an inexpensive and good natural source of antioxidants with potential interest for the food, pharmaceutical and/or cosmetic industries after purification.
Resumo:
Atmospheric pollution by motor vehicles is considered a relevant source of damage to architectural heritage. Thus the aim of this work was to assess the atmospheric depositions and patterns of polycyclic aromatic hydrocarbons (PAHs) in façades of historical monuments. Eighteen PAHs (16 PAHs considered by US EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in thin black layers collected from façades of two historical monuments: Hospital Santo António and Lapa Church (Oporto, Portugal). Scanning electron microscopy (SEM) was used for morphological and elemental characterisation of thin black layers; PAHs were quantified by microwave-assisted extraction combined with liquid chromatography (MAE-LC). The thickness of thin black layers were 80–110 μm and they contained significant levels of iron, sulfur, calcium and phosphorus. Total concentrations of 18 PAHs ranged from 7.74 to 147.92 ng/g (mean of 45.52 ng/g) in thin black layers of Hospital Santo António, giving a range three times lower than at Lapa Church (5.44– 429.26 ng/g; mean of 110.25 ng/g); four to six rings compounds accounted at both monuments approximately for 80–85% of ΣPAHs. The diagnostic ratios showed that traffic emissions were significant source of PAHs in thin black layers. Composition profiles of PAHs in thin black layers of both monuments were similar to those of ambient air, thus showing that air pollution has a significant impact on the conditions and stone decay of historical building façades. The obtained results confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere.
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
Palm oil (PO) is a very important commodity for many countries and especially Indonesia and Malaysia who are the predominant producers. PO is used in ca. 30% of supermarket foods, cosmetics, cooking and as biodiesel. The growth of oil palms in plantations is controversial as the production methods contribute to climate change and cause environmental damage [1]. The plant is subjected to a devastating disease in these two countries caused by the white rot fungus Ganoderma. There are no satisfactory methods to diagnose the disease in the plant as they are too slow and/or inaccurate. The lipid compound ergosterol is unique to fungi and is used to measure growth especially in solid substrates. We report here on the use of ergosterol to measure the growth of Ganoderma in oil palms using HPLC and TLC methods [2]. The method is rapid and correlates well with other methods and is capable of being used on-site, hence improving the speed of analysis and allowing remedial action. Climate change will affect the health of OP [1] and rapid detection methods will be increasingly required to control the disease. [1] Paterson, RRM, Kumar, L, Taylor, S, Lima N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Scientific Reports, 5, 2015, 14457. [2] Muniroh, MS, Sariah M, Zainal Abidin, MA, Lima, N, Paterson, RRM. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC. Journal of Microbiological Methods, 100, 2014, 143–147.