954 resultados para Minor Variance
Resumo:
This paper investigates the effect of varying presentation (click) rates in variance ratios for auditory brainstem responses (ABR).
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Observations suggest a possible link between the Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) variability, with the warm AMO phase being related to weaker ENSO variability. A coupled ocean-atmosphere model is used to investigate this relationship and to elucidate mechanisms responsible for it. Anomalous sea surface temperatures (SSTs) associated with the positive AMO lead to change in the basic state in the tropical Pacific Ocean. This basic state change is associated with a deepened thermocline and reduced vertical stratification of the equatorial Pacific ocean, which in turn leads to weakened ENSO variability. We suggest a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific. The results suggest a non-local mechanism for changes in ENSO statistics and imply that anomalous Atlantic ocean SSTs can modulate both mean climate and climate variability over the Pacific.
Resumo:
This note considers the variance estimation for population size estimators based on capture–recapture experiments. Whereas a diversity of estimators of the population size has been suggested, the question of estimating the associated variances is less frequently addressed. This note points out that the technique of conditioning can be applied here successfully which also allows us to identify sources of variation: the variance due to estimation of the model parameters and the binomial variance due to sampling n units from a population of size N. It is applied to estimators typically used in capture–recapture experiments in continuous time including the estimators of Zelterman and Chao and improves upon previously used variance estimators. In addition, knowledge of the variances associated with the estimators by Zelterman and Chao allows the suggestion of a new estimator as the weighted sum of the two. The decomposition of the variance into the two sources allows also a new understanding of how resampling techniques like the Bootstrap could be used appropriately. Finally, the sample size question for capture–recapture experiments is addressed. Since the variance of population size estimators increases with the sample size, it is suggested to use relative measures such as the observed-to-hidden ratio or the completeness of identification proportion for approaching the question of sample size choice.
Resumo:
Question: What is the value of using Rhinanthus minor in grassland restoration and can restrictions on its establishment be overcome? Location: England (United Kingdom). Methods: Two experiments were established to determine the efficacy of inoculating R. minor on a suite of four agriculturally improved grasslands and the efficacy of using R. minor in grassland restoration. In Experiment 1, the effect of herbicide gap creation on the establishment and persistence of R. minor in grasslands ranging in productivity was investigated with respect to sward management. In Exp. 2, R. minor was sown at 1000 seeds/m(2) in conjunction with a standard meadow mix over a randomized plot design into Lolium perenne grassland of moderate productivity. The treatment of scarification was investigated as a treatment to promote R. minor. Results: Gap size had a significant role in the establishment and performance of R. minor, especially the 30 cm diameter gaps (Exp. 1). However, R. minor failed to establish long-term persistent populations in all of the agriculturally improved grasslands. In Exp. 2, establishment of R. minor was increased by scarification and its presence was associated with a significant increase in Shannon diversity and the number of sown and unsown species. Values of grass above-ground biomass were significantly lower in plots sown with R. minor, but values of total above-ground biomass (including R. minor) and forb biomass (not including R. minor) were not affected. Conclusions: The value of introducing R. minor into species-poor grassland to increase diversity has been demonstrated, but successful establishment was dependent on grassland type. The scope for using R. minor in grassland restoration schemes is therefore conditional, although establishment can be enhanced through disturbance such as sward scarification.
Resumo:
Question: What is the impact of the presence of Rhinanthus minor on forb abundance in newly established swards? Location: Wetherby, West Yorkshire, UK (53 degrees 55' N, 1 degrees 22(1) W). Method: A standard meadow mix containing six forbs and six grasses was sown on an ex-arable field and immediately over-sown using a randomised plot design with three densities of Rhinanthus minor (0, 600, and 1000 seeds per m(2)). Above-ground biomass was analysed over a period of three years, while detailed assessments of sward composition were performed during the first two years. Results: Values of grass biomass were reduced in the presence of Rhinanthus, especially at the higher sowing density. The ratio of grass: forb biomass was also lower in association with Rhinanthus, but only at the higher sowing density. The presence of Rhinanthus, had no effect on species number or diversity, which decreased between years regardless of treatment. Conclusions: Although not tested in a multi-site experiment, the benefit of introducing Rhinanthus into newly established swards to promote for abundance was determined. The efficacy of Rhinanthus presence is likely to depend on whether species not susceptible to the effects of parasitism are present.
Resumo:
The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.
Resumo:
It is common practice to design a survey with a large number of strata. However, in this case the usual techniques for variance estimation can be inaccurate. This paper proposes a variance estimator for estimators of totals. The method proposed can be implemented with standard statistical packages without any specific programming, as it involves simple techniques of estimation, such as regression fitting.
Resumo:
The systematic sampling (SYS) design (Madow and Madow, 1944) is widely used by statistical offices due to its simplicity and efficiency (e.g., Iachan, 1982). But it suffers from a serious defect, namely, that it is impossible to unbiasedly estimate the sampling variance (Iachan, 1982) and usual variance estimators (Yates and Grundy, 1953) are inadequate and can overestimate the variance significantly (Särndal et al., 1992). We propose a novel variance estimator which is less biased and that can be implemented with any given population order. We will justify this estimator theoretically and with a Monte Carlo simulation study.
Resumo:
We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.