904 resultados para Milk -- Microbiology
Resumo:
The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.
Resumo:
In 1969, Sir William Arnold, Bailiff of Guernsey - the birthplace of Sir Isaac Brock - was invited by Dr. Gibson to come to Canada and visit Brock University on the 200th anniversary of Sir Isaac Brock's birth. Following his visit in October of that year, the Bailiff presented Brock University with this miniature silver milk can. This milk can is of the traditional Guernsey style.
Resumo:
Consuming low-fat milk (LFM) after resistance training leads to improvements in body composition. Habitual aerobic exercise and dairy intake are relatively easy lifestyle modifications that could benefit a population at risk for becoming obese. Thus, the purpose of this study was to investigate combining increased LFM intake with endurance exercise on body composition, blood-lipid profile and metabolic markers. 40 young males were randomized into four groups: one ingesting 750mL LFM immediately post-exercise, the other 6hrs post-exercise; and two isocaloric carbohydrate groups ingesting at the two different times. Participants completed a 12 week endurance-training program (cycling 1 hour/day at ~60%VO2peak, 5 days/week). 23 participants completed the study. Increases in lean mass (p < 0.05), and decreases in anti-inflammatory marker adiponectin (p < 0.05) were seen in all groups. No other significant changes were observed. Future analyses should focus on longer duration exercise and include a larger sample.
Resumo:
Consumption of low-fat milk (LFM) after resistance training has been shown to have positive influences on body composition and training adaptations; however, little research has examined the effects of LFM consumption following endurance training. The purpose of the study was to look at the effects of combining additional servings of LFM following endurance exercise on body composition, bone health, and training adaptations. 40 healthy males were recruited. Individuals were randomized into 4 groups – DEI (750mL LFM immediately post exercise), DEA (750mL LFM 4 hrs prior to or 6 hrs post exercise), CEI (750mL carbohydrate beverage immediately post-exercise), and CEA (750mL carbohydrate beverage immediately post-exercise). Participants took part in a 12-week endurance training intervention (1 h/day, 3 d/wk, ~60% max HR). 22 participants completed the study. Analysis showed significant increases in lean mass, spinal bone mineral content, relative VO2peak, and a decrease in Trap 5β across all groups (p < 0.05).
Resumo:
Receipt from Mrs. Donohue for milk, April 10, [1887].
Resumo:
Receipt from Mrs. Donohue for milk, July 6 [1887].
Resumo:
Receipt from Mrs. Donohue for milk, July 7 [1887].
Resumo:
Receipt from Mrs. Donohue for milk, July 10 [1887].
Resumo:
Receipt from Mrs. Bunting for milk, Nov. 3, [1887].
Resumo:
Receipt from Mrs. Bunting for milk and cream, Nov. 16, 1887
Resumo:
Receipt from Mrs. Bunting for milk, Nov. 24, 1887.
Resumo:
Receipt from Mrs. Bunting for milk and cream, Dec. 22, 1887.
Resumo:
Receipt from Mrs. Bunting for milk and cream, Dec. 28, 1887.
Resumo:
Receipt from Mrs. Bunting for milk and cream, Jan. 11, 1888.
Resumo:
Receipt from Mrs. Bunting for milk and cream, Jan. 18, 1888.