905 resultados para Microstrip monopole antennas
Resumo:
A numerical-analytical method is developed for solving surface integral equations (IEs) describing electromagnetic wave diffraction from arrays of complex-shaped planar reflectors. Solutions to these equations are regularized via analytical transformation of the separated singular part of the matrix kernel. Basis functions satisfying the metal-edge condition are determined on the entire surface of the complex region. The amplitude and phase responses of arrays consisting of polygonal reflectors are numerically investigated.
Resumo:
A rectangular waveguide-to-microstrip transition operating at G-band is presented. The E-plane probe, used in the transition, is fabricated on semi-insulating gallium arsenide (SI-GaAs) and it is elevated on the substrate. This configuration reduces interaction with semiconductor material. The elevated probe is suitable for direct integration with monolithic microwave integrated circuits. Measured results show S11 better than 210dB between 150 and 200 GHz and S21 ¼ 2 4dB at centre band (180GHz) for two transitions in back-to-back configuration.
Resumo:
A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.
Propagation and antennas considerations for internetworking BANs to form body-to-body networks (BBN)