896 resultados para Microcirculation dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report a series of patients with cerebellar dysfunction and altered vision during motion, and to quantify their visual impairment in motion with a simple clinical test. METHODS: Twenty consecutive patients suffering from cerebellar dysfunction and altered vision during motion were examined between 1994 and 2007. A control group consisted of 20 age- and sex-matched healthy people. All patients had a full neuro-ophthalmic examination. Near visual acuity (NVA) was measured at rest (static NVA) and during chair rotation (dynamic NVA). Distance visual acuity (DVA) was measured at rest (static DVA) and during rotation of the patient's head (dynamic DVA). RESULTS: Only four of the 20 patients reported altered vision during motion spontaneously. The remaining 16 patients admitted this unusual visual disturbance only when asked specifically. All patients exhibited abnormal eye movements, including saccadic smooth pursuit (20/20), dysmetric saccades (15/20), nystagmus (19/20) and impaired suppression of vestibulo-ocular reflex (VOR) (20/20). During rotation of the examination chair (dynamic NVA), the drop in NVA averaged 5.6 lines (range 1-10 lines). During rotation of the patient's head (dynamic DVA), the drop in DVA averaged only 2.5 lines (range 0-10 lines). For the control group, there was no significant drop in NVA under dynamic conditions. CONCLUSION: Patients with cerebellar dysfunction rarely complain spontaneously of altered vision during motion. However, specific questioning may bring up this unusual symptom. The use of a simple clinical test, consisting of NVA measurement during rotation of the examination chair (dynamic NVA), allows practitioners to quantify the level of visual impairment in patients presenting altered VOR modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) is recognized as a cause of hypopituitarism even after mild TBI. Although over the past decade, a growing body of research has detailed neuroendocrine changes induced by TBI, the mechanisms and risk factors responsible for this pituitary dysfunction are still unclear. Around the world, sports-especially combative sports-are very popular. However, sports are not generally considered as a cause of TBI in most epidemiological studies, and the link between sports-related head trauma and hypopituitarism has not been investigated until recently. Thus, there is a paucity of data regarding this important concern. Because of the large number of young sports participants with near-normal life expectancy, the implications of undiagnosed or untreated postconcussion pituitary dysfunction can be dramatic. Understanding the pathophysiological mechanisms and risk factors of hypopituitarism caused by sports injuries is thus an important issue that concerns both medical staff and sponsors of sports. The aim of this paper was to summarize the best evidence for understanding the pathophysiological mechanisms and to discuss the current data and recommendations on sports-related head trauma as a cause of hypopituitarism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether skin blood flow is local or takes part in general regulatory mechanisms, we recorded laser-Doppler flowmetry (LDF; left and right index fingers), blood pressure, muscle sympathetic nerve activity (MSNA), R-R interval, and respiration in 10 healthy volunteers and 3 subjects after sympathectomy. We evaluated 1) the synchronism of LDF fluctuations in two index fingers, 2) the relationship with autonomically mediated fluctuations in other signals, and 3) the LDF ability to respond to arterial baroreflex stimulation (by neck suction at frequencies from 0.02 to 0.20 Hz), using spectral analysis (autoregressive uni- and bivariate, time-variant algorithms). Synchronous LDF fluctuations were observed in the index fingers of healthy subjects but not in sympathectomized patients. LDF fluctuations were coherent with those obtained for blood pressure, MSNA, and R-R interval. LDF fluctuations were leading blood pressure in the low-frequency (LF; 0.1 Hz) band and lagging in the respiratory, high-frequency (HF; approximately 0.25 Hz) band, suggesting passive "downstream" transmission only for HF and "upstream" transmission for LF from the microvessels. LDF fluctuations were responsive to sinusoidal neck suction up to 0.1 Hz, indicating response to sympathetic modulation. Skin blood flow thus reflects modifications determined by autonomic activity, detectable by frequency analysis of spontaneous fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kawasaki disease is an acute vasculitis of childhood. Its clinical presentation is well known, and coronary artery aneurysms are classical complications. Shock and pleural or pericardiac effusion are rare presentations of the disease. In intensive care units, the disease may be mistaken for septic shock or toxic shock syndrome. Owing to the fact that immunoglobulin therapy improves the course of the disease, especially if given early, and thus the diagnosis should not be delayed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in vascular structure that accompany hypertension may contribute to hypertensive end-organ damage. Both the macrovascular and microvascular levels should be considered, as interactions between them are believed to be critically important. Regarding the macrocirculation, the article first reviews basic concepts of vascular biomechanics, such as arterial compliance, arterial distensibility, and stress-strain relationships of arterial wall material, and then reviews how hypertension affects the properties of conduit arteries, particularly examining evidence that it accelerates the progressive stiffening that normally occurs with advancing age. High arterial stiffness may increase central systolic and pulse pressure by two different mechanisms: 1) Abnormally high pulse wave velocity may cause pressure waves reflected in the periphery to reach the central aorta in systole, thus augmenting systolic pressure; 2) In the elderly, the interaction of the forward pressure wave with high arterial stiffness is mostly responsible for abnormally high pulse pressure. At the microvascular level, hypertensive disease is characterized by inward eutrophic or hypertrophic arteriolar remodeling and capillary rarefaction. These abnormalities may depend in part on the abnormal transmission of highly pulsatile blood pressure into microvascular networks, especially in highly perfused organs with low vascular resistance, such as the kidney, heart, and brain, where it contributes to hypertensive end-organ damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic mountain sickness (CMS) is characterized by exaggerated exercise-induced pulmonary hypertension. Evidences suggests that exercise may cause lung fluid accumulation at high altitude. We hypothesized that, in patients with CMS, exercise causes lung fluid accumulation.Methods: In 21 male CMS patients and 20 matched healthy controls born and permanently living in La Paz (Bolivia, 3600m) we assessed with echocardiogram, pulmonary artery pressure (PASP), right and left ventricular function and ultrasoundlung comets (ULCs, a marker of lung fluid accumulation) at rest and during mild bicycle exercise (10 min at 50W).Results: CMS patients presented a more than 2-fold greater exercise-induced increase in pulmonary artery pressure than controls (17.1±8.3 vs 7.2±7.9 mmHg, P=0.003). This exaggerated PASP response to exercise was associated with a roughly 3-fold greater increase in UCLs in patients with CMS than in controls (6.3±5.1 vs. 2.1±5.3, p<0.05), and there existed a significant relationship between PASP and UCLs (r=0.44, p<0.001). Finally, TDI on lateral tricuspid annulus decreased during exercise in patients with CMS (from 13.2±3.2 to 11.5±2.1 cm s-1, p=0.03), but increased in controls (from 13.1±2.9 to 14.9±2.6 cm s-1 , p=0.04). Left ventricular function remained unaltered in the 2 groups.Conclusions: we provide the first direct evidence in CMS patients that exaggerated exercise-induced pulmonary hypertension causes rapid lung fluid accumulation and right ventricular dysfunction. We speculate that in patients with CMS these two phenomena contribute to reduced exercise performances and Figure 1 increased cardiovascular morbidity and mortality that characterise these subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic beta-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS: We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS: Prolonged exposure of the beta-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in beta-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS: Our findings suggest that at least part of the detrimental effects of palmitate on beta-cells is caused by alterations in the level of specific miRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAPPORT DE SYNTHESE Introduction : dans la présente étude, nous nous sommes intéressés à la vasodilatation cutanée induite par le réchauffement local (hyperémie thermique). Il est établi, qu'une partie de cette réponse vasculaire est médiée par l'oxyde nitrique (NO). De manière générale, les effets du NO peuvent être sujets à une désensibilisation, comme nous le démontre le phénomène bien connu de tolérance aux dérivés nitrés. Le but du présent travail était d'évaluer si une telle désensibilisation existe dans le cas de l'hyperémie thermique. Méthodes : nous avons donc examiné si une première stimulation thermique pouvait en atténuer une deuxième, induite plus tard sur le même site cutané à une intervalle de 2h ou 4h. Pour vérifier directement l'effet du réchauffement local sur la sensibilité de la microcirculation cutanée au NO, nous avons de plus appliqué un donneur de NO (nitroprussiate de sodium, SNP) par la technique d' iontophorèse, sur des sites cutanés préalablement soumis à un échauffement local 2h ou 4h auparavant. Nous avons examinés 12 sujets en bonne santé habituelle, de sexe masculin, non fumeurs, âgés de 18 à 30 ans, ne prenant aucune médication. Le flux sanguin dermique a été mesuré par imagerie laser Doppler (LDI, Moor Instruments) sur la face antérieur de l'avant-bras. Le réchauffement local de la peau a été effectué grâce a des petits anneaux métalliques thermo-contrôlés contenant de l'eau. La température était initialement de 34°C. Elle a été augmentée à 41 °C en une minute et maintenue à cette valeur durant 30 minutes. Cette manoeuvre a été répétée sur le même site cutané soit 2 h, soit 4h plus tard. Quant à l'iontophorèse de SNP, elle a été effectuée sur des sites ayant préalablement subi, 2h ou 4h auparavant, un échauffement unique appliqué selon la technique qui vient d'être décrite. Résultats : nous avons observé une atténuation de l'hyperémie thermique lorsque celleci était examinée 2h après un premier échauffement local. Lorsque l'intervalle était de 4h la réponse vasodilatatrice n'était pas réduite. Nous avons également observé une atténuation de la réponse vasodilatatrice au SNP lorsque celui-ci a était appliqué 2h, mais non 4h après un premier échauffement local. Conclusion :cette étude démontre que la réponse vasodilatatrice cutanée induite par l'échauffement local est bien sujette à désensibilisation, comme nous en avions formulé l'hypothèse. Ce phénomène est transitoire. Il est lié, au moins en partie, à une baisse de sensibilité de la microcirculation cutanée aux effets vasodilatateurs du NO.