999 resultados para Microbiological analysis,
Resumo:
It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future.
Resumo:
PURPOSE: The low diagnostic yield of vitrectomy specimen analysis in chronic idiopathic uveitis (CIU) has been related to the complex nature of the underlying disease and to methodologic and tissue immanent factors in older studies. In an attempt to evaluate the impact of recently acquired analytic methods, the authors assessed the current diagnostic yield in CIU. METHODS: Retrospective analysis of consecutive vitrectomy specimens from patients with chronic endogenous uveitis (n = 56) in whom extensive systemic workup had not revealed a specific diagnosis (idiopathic) and medical treatment had not resulted in a satisfying clinical situation. Patients with acute postoperative endophthalmitis served a basis for methodologic comparison (Group 2; n = 21). RESULTS: In CIU, a specific diagnosis provided in 17.9% and a specific diagnosis excluded in 21.4%. In 60.7% the laboratory investigations were inconclusive. In postoperative endophthalmitis, microbiological culture established the infectious agent in 47.6%. In six of eight randomly selected cases, eubacterial PCR identified bacterial DNA confirming the culture results in three, remaining negative in two with a positive culture and being positive in three no growth specimens. A double negative result never occurred, suggesting a very high detection rate, when both tests were applied. CONCLUSIONS: The diagnostic yield of vitrectomy specimen analysis has not been improved by currently routinely applied methods in recent years in contrast to the significantly improved sensitivity of combined standardized culture and PCR analysis in endophthalmitis. Consequently, the low diagnostic yield in CIU has to be attributed to insufficient understanding of the underlying pathophysiologic mechanisms.
Resumo:
OBJECTIVES: To assess the microbiological outcome of local administration of minocycline hydrochloride microspheres 1 mg (Arestin) in cases with peri-implantitis and with a follow-up period of 12 months. MATERIAL AND METHODS: After debridement, and local administration of chlorhexidine gel, peri-implantitis cases were treated with local administration of minocycline microspheres (Arestin). The DNA-DNA checkerboard hybridization method was used to detect bacterial presence during the first 360 days of therapy. RESULTS: At Day 10, lower bacterial loads for 6/40 individual bacteria including Actinomyces gerensceriae (P<0.1), Actinomyces israelii (P<0.01), Actinomyces naeslundi type 1 (P<0.01) and type 2 (P<0.03), Actinomyces odontolyticus (P<0.01), Porphyromonas gingivalis (P<0.01) and Treponema socranskii (P<0.01) were found. At Day 360 only the levels of Actinobacillus actinomycetemcomitans were lower than at baseline (mean difference: 1x10(5); SE difference: 0.34x10(5), 95% CI: 0.2x10(5) to 1.2x10(5); P<0.03). Six implants were lost between Days 90 and 270. The microbiota was successfully controlled in 48%, and with definitive failures (implant loss and major increase in bacterial levels) in 32% of subjects. CONCLUSIONS: At study endpoint, the impact of Arestin on A. actinomycetemcomitans was greater than the impact on other pathogens. Up to Day 180 reductions in levels of Tannerella forsythia, P. gingivalis, and Treponema denticola were also found. Failures in treatment could not be associated with the presence of specific pathogens or by the total bacterial load at baseline. Statistical power analysis suggested that a case control study would require approximately 200 subjects.
Resumo:
Background: The bacterial colonization of the oral mucosa was evaluated in patients with asymptomatic oral lichen planus (OLP) and compared to the microbiologic status in mucosally healthy subjects. Methods: Bacteria from patients with clinically and histopathologically diagnosed OLP from the Stomatology Service, Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, were collected with a non-invasive swab system. Samples were taken from OLP lesions on the gingiva and from non-affected sites on the contralateral side of the mouth. The control population did not have OLP and was recruited from the student clinic. All samples were processed with the checkerboard DNA-DNA hybridization method using well-defined bacterial species for the analysis. Results: Significantly higher bacterial counts of Bacteroides ureolyticus (P = 0.001), Dialister species (sp.) (P = 0.006), Staphylococcus haemolyticus (P = 0.007), and Streptococcus agalactiae (P = 0.006) were found in samples taken from OLP lesions compared to sites with no clinical evidence of OLP. Significantly higher bacterial counts were found for Capnocytophaga sputigena, Eikenella corrodens, Lactobacillus crispatus, Mobiluncus curtisii, Neisseria mucosa, Prevotella bivia, Prevotella intermedia, and S. agalactiae at sites with lesions in subjects with OLP compared to sites in control subjects (P <0.001). Conclusions: Microbiologic differences were found between sites with OLP and sites in subjects without a diagnosis of OLP. Specifically, higher counts of staphylococci and S. agalactiae were found in OLP lesions.
Resumo:
OBJECTIVES: To evaluate the potential improvement of antimicrobial treatment by utilizing a new multiplex polymerase chain reaction (PCR) assay that identifies sepsis-relevant microorganisms in blood. DESIGN: Prospective, observational international multicentered trial. SETTING: University hospitals in Germany (n = 2), Spain (n = 1), and the United States (n = 1), and one Italian tertiary general hospital. PATIENTS: 436 sepsis patients with 467 episodes of antimicrobial treatment. METHODS: Whole blood for PCR and blood culture (BC) analysis was sampled independently for each episode. The potential impact of reporting microorganisms by PCR on adequacy and timeliness of antimicrobial therapy was analyzed. The number of gainable days on early adequate antimicrobial treatment attributable to PCR findings was assessed. MEASUREMENTS AND MAIN RESULTS: Sepsis criteria, days on antimicrobial therapy, antimicrobial substances administered, and microorganisms identified by PCR and BC susceptibility tests. RESULTS: BC diagnosed 117 clinically relevant microorganisms; PCR identified 154. Ninety-nine episodes were BC positive (BC+); 131 episodes were PCR positive (PCR+). Overall, 127.8 days of clinically inadequate empirical antibiotic treatment in the 99 BC+ episodes were observed. Utilization of PCR-aided diagnostics calculates to a potential reduction of 106.5 clinically inadequate treatment days. The ratio of gainable early adequate treatment days to number of PCR tests done is 22.8 days/100 tests overall (confidence interval 15-31) and 36.4 days/100 tests in the intensive care and surgical ward populations (confidence interval 22-51). CONCLUSIONS: Rapid PCR identification of microorganisms may contribute to a reduction of early inadequate antibiotic treatment in sepsis.
Resumo:
PURPOSE The purpose of this study was to document the long-term outcome of Brånemark implants installed in augmented maxillary bone and to identify parameters that are associated with peri-implant bone level. MATERIAL AND METHODS Patients of a periodontal practice who had been referred to a maxillofacial surgeon for iliac crest bone grafting in the atrophic maxilla were retrospectively recruited. Five months following grafting, they received 7-8 turned Brånemark implants. Following submerged healing of another 5 months, implants were uncovered and restorative procedures for fixed rehabilitation were initiated 2-3 months thereafter. The primary outcome variable was bone level defined as the distance from the implant-abutment interface to the first visible bone-to-implant contact. Secondary outcome variables included plaque index, bleeding index, probing depth, and levels of 40 species in subgingival plaque samples as identified by means of checkerboard DNA-DNA hybridization. RESULTS Nine out of 16 patients (eight females, one male; mean age 59) with 71 implants agreed to come in for evaluation after on average 9 years (SD 4; range 3-13) of function. One implant was deemed mobile at the time of inspection. Clinical conditions were acceptable with 11% of the implants showing pockets ≥ 5 mm. Periodontopathogens were encountered frequently and in high numbers. Clinical parameters and bacterial levels were highly patient dependent. The mean bone level was 2.30 mm (SD 1.53; range 0.00-6.95), with 23% of the implants demonstrating advanced resorption (bone level > 3 mm). Regression analysis showed a significant association of the patient (p < .001) and plaque index (p = .007) with bone level. CONCLUSIONS The long-term outcome of Brånemark implants installed in iliac crest-augmented maxillary bone is acceptable; however, advanced peri-implant bone loss is rather common and indicative of graft resorption. This phenomenon is patient dependent and seems also associated with oral hygiene.
Resumo:
PURPOSE The purpose of this study was to investigate whether there are microbiological differences in bacterial samples collected from labial piercings made of different materials. METHODS Sterile piercings of 4 materials were randomly allocated to 80 pierced subjects. After 2 weeks, microbiologic samples were collected and processed by checkerboard DNA-DNA hybridization methods. Wilcoxon signed ranks and Mann-Whitney tests were used for statistical analysis (adjustment for multiple comparisons). RESULTS There were no statistically significant differences between material groups in relation to baseline data. In samples from stainless steel piercings, the total microbial load was significantly higher than the other materials (P<.05). Ten (mainly periopathogenic) species were found at significantly higher levels (P<.001) on steel than on polypropylene and/or polytetrafluoroethylene piercings. CONCLUSIONS Labial piercings made of stainless steel could promote the development of a pathogenic biofilm.
Resumo:
Los métodos de detección rápida de microorganismos se están convirtiendo en una herramienta esencial para el control de calidad en el área de la biotecnología, como es el caso de las industrias de alimentos y productos farmacéuticos y bioquímicos. En este escenario, el objetivo de esta tesis doctoral es desarrollar una técnica de inspección rápida de microoganismos basada en ultrasonidos. La hipótesis propuesta es que la combinación de un dispositivo ultrasónico de medida y un medio líquido diseñado específicamente para producir y atrapar burbujas, pueden constituir la base de un método sensible y rápido de detección de contaminaciones microbianas. La técnica presentada es efectiva para bacterias catalasa-positivas y se basa en la hidrólisis del peróxido de hidrógeno inducida por la catalasa. El resultado de esta reacción es un medio con una creciente concentración de burbujas. Tal medio ha sido estudiado y modelado desde el punto de vista de la propagación ultrasónica. Las propiedades deducidas a partir del análisis cinemático de la enzima se han utilizado para evaluar el método como técnica de inspección microbiana. En esta tesis, se han investigado aspectos teóricos y experimentales de la hidrólisis del peróxido de hidrógeno. Ello ha permitido describir cuantitativamente y comprender el fenómeno de la detección de microorganismos catalasa-positivos mediante la medida de parámetros ultrasónicos. Más concretamente, los experimentos realizados muestran cómo el oxígeno que aparece en forma de burbujas queda atrapado mediante el uso de un gel sobre base de agar. Este gel fue diseñado y preparado especialmente para esta aplicación. A lo largo del proceso de hidrólisis del peróxido de hidrógeno, se midió la atenuación de la onda y el “backscattering” producidos por las burbujas, utilizando una técnica de pulso-eco. Ha sido posible detectar una actividad de la catalasa de hasta 0.001 unidades/ml. Por otra parte, este estudio muestra que por medio del método propuesto, se puede lograr una detección microbiana para concentraciones de 105 células/ml en un periodo de tiempo corto, del orden de unos pocos minutos. Estos resultados suponen una mejora significativa de tres órdenes de magnitud en comparación con otros métodos de detección por ultrasonidos. Además, la sensibilidad es competitiva con modernos y rápidos métodos microbiológicos como la detección de ATP por bioluminiscencia. Pero sobre todo, este trabajo muestra una metodología para el desarrollo de nuevas técnicas de detección rápida de bacterias basadas en ultrasonidos. ABSTRACT In an industrial scenario where rapid microbiological methods are becoming essential tools for quality control in the biotechnological area such as food, pharmaceutical and biochemical; the objective of the work presented in this doctoral thesis is to develop a rapid microorganism inspection technique based on ultrasounds. It is proposed that the combination of an ultrasonic measuring device with a specially designed liquid medium, able to produce and trap bubbles could constitute the basis of a sensitive and rapid detection method for microbial contaminations. The proposed technique is effective on catalase positive microorganisms. Well-known catalase induced hydrogen peroxide hydrolysis is the fundamental of the developed method. The physical consequence of the catalase induced hydrogen peroxide hydrolysis is an increasingly bubbly liquid medium. Such medium has been studied and modeled from the point of view of ultrasonic propagation. Properties deduced from enzyme kinematics analysis have been extrapolated to investigate the method as a microbial inspection technique. In this thesis, theoretical and experimental aspects of the hydrogen peroxide hydrolysis were analyzed in order to quantitatively describe and understand the catalase positive microorganism detection by means of ultrasonic measurements. More concretely, experiments performed show how the produced oxygen in form of bubbles is trapped using the new gel medium based on agar, which was specially designed for this application. Ultrasonic attenuation and backscattering is measured in this medium using a pulse-echo technique along the hydrogen peroxide hydrolysis process. Catalase enzymatic activity was detected down to 0.001 units/ml. Moreover, this study shows that by means of the proposed method, microbial detection can be achieved down to 105 cells/ml in a short time period of the order of few minutes. These results suppose a significant improvement of three orders of magnitude compared to other ultrasonic detection methods for microorganisms. In addition, the sensitivity reached is competitive with modern rapid microbiological methods such as ATP detection by bioluminescence. But above all, this work points out a way to proceed for developing new rapid microbial detection techniques based on ultrasound.
Resumo:
The haloarchaeon Haloferax mediterranei is able to grow in a defined culture media not only in the presence of inorganic nitrogen salt but also with amino acid as the sole nitrogen source. Assimilatory nitrate and nitrite reductases, respectively, catalyze the first and second reactions. The genes involved in this process are nasA, which encodes nitrate reductase and is found within the operon nasABC, and nasD, which encodes nitrite reductase. These genes are subjected to transcriptional regulation, being repressed in the presence of ammonium and induced with either nitrate or nitrite. This type of regulation has also been described when the amino acids are used as nitrogen source in the minimal media. Furthermore, it has been observed that the microorganism growth depends on nitrogen source, obtaining the lowest growth rate in the presence of nitrate and aspartate. In this paper, we present the results of a comparative study of microorganism growth and transcriptomic analysis of the operon nasABC and gene nasD in different nitrogen sources. The results are the first ever produced in relation to amino acids as nitrogen sources within the Halobacteriaceae family.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Pilin is the major subunit of the essential virulence factor pili and is glycosylated at Ser63. In this study we investigated the gene pglI to determine whether it is involved in the biosynthesis of the pilin-linked glycan of Neisseria meningitidis strain C311#3. A N. meningitidis C311#3pglI mutant resulted in a change of apparent molecular weight in SDS-PAGE and altered binding of antisera, consistent with a role in the biosynthesis of the pilin-linked glycan. These data, in conjunction with homology with well-characterised acyltransferases suggests a specific role for pglI in the biosynthesis of the basal 2,4-diacetamido-2,4,6-trideoxyhexose residue of the pilin-linked glycan. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.
Resumo:
Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Folates and its derivatives occur as polyglutamates in nature. The multiplicity of forms and the generally low levels in foods makes quantitative analysis of folate a difficult task. The assay of folates from foods generally involves three steps: liberation of folates from the cellular matrix; deconjugation from the polyglutamate to the mono and di-glutamate forms; and the detection of the biological activity or chemical concentration of the resulting folates. The detection methods used are the microbiological assay relying on the turbidimetric bacterial growth of Lactobacillus rhamnosus which is by far the most commonly used method; the HPLC and LC/MS techniques and bio-specific procedures. This review attempts to describe the methods along with the merits and demerits of using each of these methods.
Resumo:
Principal components analysis (PCA) has been described for over 50 years; however, it is rarely applied to the analysis of epidemiological data. In this study PCA was critically appraised in its ability to reveal relationships between pulsed-field gel electrophoresis (PFGE) profiles of methicillin- resistant Staphylococcus aureus (MRSA) in comparison to the more commonly employed cluster analysis and representation by dendrograms. The PFGE type following SmaI chromosomal digest was determined for 44 multidrug-resistant hospital-acquired methicillin-resistant S. aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK). Strain relatedness was determined using Dice band-matching with UPGMA clustering and PCA. The results indicated that PCA revealed relationships between MRSA strains, which were more strongly correlated with known epidemiology, most likely because, unlike cluster analysis, PCA does not have the constraint of generating a hierarchic classification. In addition, PCA provides the opportunity for further analysis to identify key polymorphic bands within complex genotypic profiles, which is not always possible with dendrograms. Here we provide a detailed description of a PCA method for the analysis of PFGE profiles to complement further the epidemiological study of infectious disease. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Discriminant analysis (also known as discriminant function analysis or multiple discriminant analysis) is a multivariate statistical method of testing the degree to which two or more populations may overlap with each other. It was devised independently by several statisticians including Fisher, Mahalanobis, and Hotelling ). The technique has several possible applications in Microbiology. First, in a clinical microbiological setting, if two different infectious diseases were defined by a number of clinical and pathological variables, it may be useful to decide which measurements were the most effective at distinguishing between the two diseases. Second, in an environmental microbiological setting, the technique could be used to study the relationships between different populations, e.g., to what extent do the properties of soils in which the bacterium Azotobacter is found differ from those in which it is absent? Third, the method can be used as a multivariate ‘t’ test , i.e., given a number of related measurements on two groups, the analysis can provide a single test of the hypothesis that the two populations have the same means for all the variables studied. This statnote describes one of the most popular applications of discriminant analysis in identifying the descriptive variables that can distinguish between two populations.