887 resultados para Metallic matrix composites


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recycled polymer matrix composites reinforced with wood flour can be a viable alternative for the replacement of wood and virgin polymers in materials used in floors, door frames, windows and external cladding. The objective of this research was to determine some physical and mechanical parameters of composite made with Pinus taeda and elliottii wood flour (WF) and recycled polypropylene (PP), without the use of compatibilizers or additives. The composites were separated into four traits, namely 100% PP, 90% PP with 10%, WF 80% PP with 20% WF and 70 % PP with 30% WF. The characterization of the composite followed the standards ASTM D-638-10, ASTM D256-00, ASTM D570 -98, ASTM D1238 -10 and ASTM G 155-05, it was also employed the surface analysis by scanning electron microscopy. The dimensional stability tests showed satisfactory results. Even the composite with a higher percentage of wood flour (30%) had a flow index of 10 MFI, considered compatible with that observed for PP (polypropylene) virgin by standard ASTM D 1238-10. The inclusion of wood flour (FM) afforded composites with good mechanical characteristics which can be applied in manufacture of different materials, specifically employed outdoors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The AA356 alloy is an alloy widely used in the automotive industry and aerospace due to its excellent mechanical properties. Refining the structure of eutectic silicon aluminum alloys is a fairly common practice in the foundry through treatment known as modification. This can be achieved by modifying agent adding chemicals such as contained in groups I and IIa of the periodic table and rare earths (europium, céreioi, praseodymium, neodymium, etc.). Has the ability to modify the structure of the eutectic, but only sodium and strontium produce an action modifier strong when used in low concentrations. The modifying effect of the shafts turn silicon into a fibrous form and branched surrounded by metallic matrix in the form of a composite structure that has the highest limit of tensile strength, ductility and machinability. In this work will be obtained ingots with and without the modifier type Al-10% Sr, made in sand molds and are generated and analyzed cooling curves and also the study of the macrostructure and microstructure of the solidified material. It was found that by adding the Al-Sr made shorten the solidification time and lower the grain size

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing application of structural composites in the aerospace industry is mainly due to its low specific weight coupled with its excellent mechanical properties when in service. As a result of climatic variations that pass the aircraft is of paramount importance to study the influence of weathering on this type of material when subjected to such changes. The purpose of this work is to evaluate the mechanical behavior of specimens of kevlar fiber /epoxy matrix composites, by dynamic mechanical thermal analysis (DMA) and interlaminar shear strength tests (ILSS), after passing through three environmental conditioning: saline fog, hygrothermal and ultraviolet radiation. From the results, we concluded that the laminate was molded supplied homogeneously, not presenting problems such as porosity, delaminations or cracks inside. After a period of 625 hours of exposure to hygrothermal conditioning, we observed a 1,2% maximum of absorption of moisture. Samples subjected to the conditioning by UV irradiation (600 hours) and salt spray showed a reduction of about 24,30% and 32,30%, respectively, on the shear strength (ILSS). In DMA analysis is not observed significant changes on the glass transition temperature. However, when considering the storage modulus of the samples conditioned by UV radiation (1200 hours), salt spray and hygrothermal conditioning there is an increase of 5,34% , 7,19% and 5,57% respectively

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of their low elasticity modulus, titanium alloys have excellent biocompatibility, and are largely used in orthopedic prostheses. Among the properties that are beneficial for use in orthopedic implants is the elasticity modulus, which is closely connected to the crystal structure of the material. Interstitial elements, such as oxygen, change the mechanical properties of the material. Anelastic spectroscopy measurements are a powerful tool for the study of the interaction of these elements with the metallic matrix and substitutional solutes, providing information on the diffusion and concentration of interstitial elements. In this study, the effect of oxygen on the anelastic properties of alloys in the Ti-15Mo-Zr system was analyzed using anelastic spectroscopy measurements. The diffusion coefficients, pre-exponential factors, and activation energies of these alloys were calculated for oxygen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A specific manufacturing process to obtain continuous glass fiber-reinforced RIFE laminates was studied and some of their mechanical properties were evaluated. Young's modulus and maximum strength were measured by three-point bending test and tensile test using the Digital Image Correlation (DIC) technique. Adhesion tests, thermal analysis and microscopy were used to evaluate the fiber-matrix adhesion, which is very dependent on the sintering time. The composite material obtained had a Young's modulus of 14.2 GPa and ultimate strength of 165 MPa, which corresponds to approximately 24 times the modulus and six times the ultimate strength of pure RIFE. These results show that the RIFE composite, manufactured under specific conditions, has great potential to provide structural parts with a performance suitable for application in structural components. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le leghe di alluminio da fonderia rivestono un ruolo fondamentale in ambito industriale e in particolare il settore dei trasporti ha notevolmente incrementato il loro impiego per la realizzazione di componenti strutturali. Al fine di aumentare ulteriormente la resistenza specifica, tali leghe possono essere impiegate come matrici per lo sviluppo di compositi (Metal Matrix Composites, MMCs), le cui fasi di rinforzo possono avere diversa composizione, forma e dimensione. In particolare, nel caso di rinforzo particellare, più le particelle sono piccole e finemente disperse nella matrice, più elevato può essere l’incremento delle prestazioni meccaniche. In quest’ottica, la ricerca ha portato allo sviluppo dapprima di compositi caratterizzati da un rinforzo micrometrico e, in anni recenti, si sta concentrando sul rinforzo nanometrico (Metal Matrix Nano Composites, MMNCs). I nano-compositi possono essere ottenuti attraverso metodologie differenti: tecniche in situ, in cui il rinforzo viene generato all’interno della matrice attraverso opportune reazioni chimiche, e tecniche ex situ, in cui i dispersoidi vengono inseriti nella matrice fusa, una volta già formati. Sebbene l’incremento prestazionale ottenibile da tali materiali sia stato dimostrato, è necessario far fronte ad alcune problematiche connesse a ciascuna tecnologia produttiva quali, ad esempio, il controllo dei parametri di processo, per quanto riguarda le tecniche in situ, e l’ottenimento di una efficace dispersione delle nano-particelle all’interno della matrice, nel caso delle metodologie ex-situ. Lo scopo della presente attività di tesi è lo studio di fattibilità, basato anche su un’ampia indagine bibliografica, e l’implementazione di metodologie produttive, su scala di laboratorio, volte allo sviluppo di MMNCs a matrice in lega di alluminio (A356, Al-Si-Mg). L’interesse è stato posto in primo luogo sul processo in situ di gas bubbling, mirato all’ottenimento di rinforzo d’allumina, indotto dalla reazione tra matrice metallica e gas ossidante (in questo caso aria secca industriale). In secondo luogo, dal punto di vista delle tecniche ex situ, è stato approfondito l’aspetto della dispersione delle particelle di rinforzo nel fuso, prestando particolare attenzione alla tecnica di trattamento ultrasonico del metallo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foundry aluminum alloys play a fundamental role in several industrial fields, as they are employed in the production of several components in a wide range of applications. Moreover, these alloys can be employed as matrix for the development of Metal Matrix Composites (MMC), whose reinforcing phases may have different composition, shape and dimension. Ceramic particle reinforced MMCs are particular interesting due to their isotropic properties and their high temperature resistance. For this kind of composites, usually, decreasing the size of the reinforcing phase leads to the increase of mechanical properties. For this reason, in the last 30 years, the research has developed micro-reinforced composites at first, characterized by low ductility, and more recently nano-reinforced ones (the so called metal matrix nanocomposite, MMNCs). The nanocomposites can be obtained through several production routes: they can be divided in in-situ techniques, where the reinforcing phase is generated during the composite production through appropriate chemical reactions, and ex situ techniques, where ceramic dispersoids are added to the matrix once already formed. The enhancement in mechanical properties of MMNCs is proved by several studies; nevertheless, it is necessary to address some issues related to each processing route, as the control of process parameters and the effort to obtain an effective dispersion of the nanoparticles in the matrix, which sometimes actually restrict the use of these materials at industrial level. In this work of thesis, a feasibility study and implementation of production processes for Aluminum and AlSi7Mg based-MMNCs was conducted. The attention was focused on the in-situ process of gas bubbling, with the aim to obtain an aluminum oxide reinforcing phase, generated by the chemical reaction between the molten matrix and industrial dry air injected in the melt. Moreover, for what concerns the ex-situ techniques, stir casting process was studied and applied to introduce alumina nanoparticles in the same matrix alloys. The obtained samples were characterized through optical and electronic microscopy, then by micro-hardness tests, in order to evaluate possible improvements in mechanical properties of the materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.