960 resultados para Metal-Ceramic interface. Tricone drill bits. Brazing. Wetting. Contact angle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, air dielectric barrier discharge (DBD) operating at two different frequencies (60 Hz and 17 kHz) was used to improve surface properties of polypropylene (PP). The changes in surface hydrophilicity were investigated by contact angle measurements. The modifications in chemical composition of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The PP roughness were analyzed before and after the DBD treatment using atomic force microscopy (AFM). In order to compare the results obtained at different frequencies, the analyses are presented as a function of the deposited energy density. The results show that both DBD treatments led to formation of low-molecular weight oxidized material (LMWOM). It tends to agglomerate into small mounts on the surface, as shown by AFM analyses. These structures are weakly bounded to the surface and can be easily removed by rinsing in polar solvents. After washing the DBD-treated samples, the PP partially recovers its original wetting characteristics. This suggests that oxidation also occurred at deeper and more permanent levels on the PP samples. Comparing both DBD treatments, the 17 kHz process was found to be more efficient in introducing oxygen groups to the PP surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium has proven its suitability as an implant material in surgery over many years. Excellent biocompatibility and corrosion resistance are outstanding features. Implant surfaces always causes concern and interest in scientific communities, due to its close relationship with the time required for osseointegration. Surface modification can be performed by several methods, being laser irradiation one of them. Titanium implants with two different surfaces were inserted in rabbits: Group I (G-I: machined surface, control group), and group II (G-II: laser irradiated, test group) being processed 30 and 60 days after surgery for histological analysis. Surface characterization was performed with SEM-EDS, contact angle measurement, and mean roughness (Ra) parameters. Surface analysis in the GII group showed a nanomorphology affected by melt and quick solidification zones following laser irradiation (SEM), as well as total wettability and Ra mean values significantly higher than in the G-I group. The laser treatment resulted in a homogenized, porous surface, with increased surface area and volume. Histological analysis of bone-implant contact linear extension (BIC) showed better results in G-II at 30 days (39.26 ± 18.23 and 68.41 ± 13.68 for G-I and G-II groups, respectively). Titanium implants modified by laser irradiation showed important features that may accelerate early osseointegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the internal fit, marginal adaptation, and bond strengths of inlays made of computer-aided design/computer-aided manufacturing feldspathic ceramic and polymer-infiltrated ceramic. Twenty molars were randomly selected and prepared to receive inlays that were milled from both materials. Before cementation, internal fit was achieved using the replica technique by molding the internal surface with addition silicone and measuring the cement thicknesses of the pulpal and axial walls. Marginal adaptation was measured on the occlusal and proximal margins of the replica. The inlays were then cemented using resin cement (Panavia F2.0) and subjected to two million thermomechanical cycles in water (200 N load and 3.8-Hz frequency). The restored teeth were then cut into beams, using a lathe, for microtensile testing. The contact angles, marginal integrity, and surface patterns after etching were also observed. Statistical analysis was performed using two-way repeated measures analysis of variance (p<0.05), the Tukey test for internal fit and marginal adaptation, and the Student t-test for bond strength. The failure types (adhesive or cohesive) were classified on each fractured beam. The results showed that the misfit of the pulpal walls (p=0.0002) and the marginal adaptation (p=0.0001) of the feldspathic ceramic were significantly higher when compared to those of the polymer-infiltrated ceramic, while the bond strength values of the former were higher when compared to those of the latter. The contact angle of the polymer-infiltrated ceramic was also higher. In the present study, the hybrid ceramic presented improved internal and marginal adaptation, but the bond strengths were higher for the feldspathic ceramic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have reported that alcohol may lead to imbalance in bone formation and resorption, however, its effects on osseointegration of titanium implants continues to be an inconclusive subject. In this context, the aim of this study was to make a biomechanical evaluation of the effect of abusive alcohol consumption on the removal torque of osseointegrated titanium implants. Male Wistar rats (n=30) were divided into two experimental groups (15 each) receiving only water (Control) or 36% alcohol solution oral administration. Thirty days later, all animals were submitted to titanium implant (2.2 mm x 4 mm) placement in the right and left tibiae. The surgical alveoli were prepared with a 2 mm drill mounted in a counter-angle hand-piece (20:1 ratio, 35 Ncm torque at 1200 rpm) under abundant cooling. Five animals from each group were euthanized at 15, 30, and 60 days. Tibiae were submitted to reverse torque analysis. Data obtained were submitted to statistical analysis by the non-parametric Kruskal-Wallis and Dunn Tests (p < 0.05). Animals in the alcohol group presented lower removal torque values when compared with control group animals for all periods tested (p < 0.05). It can be concluded that abusive alcohol consumption can reduce the removal torque of titanium implants placed in rat tibiae, suggesting that alcohol may interfere in the osseointegration process of titanium implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have reported that alcohol may lead to imbalance in bone formation and resorption, however, its effects on osseointegration of titanium implants continues to be an inconclusive subject. In this context, the aim of this study was to make a biomechanical evaluation of the effect of abusive alcohol consumption on the removal torque of osseointegrated titanium implants. Male Wistar rats (n=30) were divided into two experimental groups (15 each) receiving only water (Control) or 36% alcohol solution oral administration. Thirty days later, all animals were submitted to titanium implant (2.2 mm x 4 mm) placement in the right and left tibiae. The surgical alveoli were prepared with a 2 mm drill mounted in a counter-angle hand-piece (20:1 ratio, 35 Ncm torque at 1200 rpm) under abundant cooling. Five animals from each group were euthanized at 15, 30, and 60 days. Tibiae were submitted to reverse torque analysis. Data obtained were submitted to statistical analysis by the non-parametric Kruskal-Wallis and Dunn Tests (p < 0.05). Animals in the alcohol group presented lower removal torque values when compared with control group animals for all periods tested (p < 0.05). It can be concluded that abusive alcohol consumption can reduce the removal torque of titanium implants placed in rat tibiae, suggesting that alcohol may interfere in the osseointegration process of titanium implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dental trade has offered dental impression and dental stone for orthodontic use ensuring accurate models. The compatibility between these materials is defined by the wetting of the model surfaces by the mixture water/stone poured over it and the influenced by the method of disinfection of model and disinfectant solution used. It was evaluated the influence of spray disinfection with sodium hypochlorite 1% on the wettability of two commercial alginate (Jeltrate ® - Dentsply and Orthoprint ® - Zhermack) at two commercial type III gypsum (Rio ® - ME and AOBussoli Orthogesso Orthogesso ®-SA). Twenty models were fabricated for each type of alginate, which were divided into two groups (water and sodium hypochlorite), receiving respectively water and sodium hypochlorite 1% spray. Each group of models was then further divided into two subgroups, and on their surface were poured 2 ml of type III gypsum (Gesso Rio® or Orthogesso®). Reached the final setting of the gypsum specimens were sectioned vertically and medially, settled water with sandpaper No. 400 and mounted on suitable device for reading (in the right and left) of the contact angle Carl Zeiss microscope (precision, 001). The results were submitted to ANOVA and founded statistical significance for solutions used. It was concluded that sodium hypochlorite spray improved wettability of alginates studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cares at the manipulation of the alginate (condensation, disinfection of the impression and the time elapsed until the leak of the plaster) deserve special attention considering the great amount of distortions occurring every time the impression is not fill of plaster in a brief space of time and appropriate storage conditions. Besides its adaptation to the plaster suffers influence of the events happened after the impression is removed of the mouth. The purpose of this research was to evaluate the wetting capacity of three brands of alginate (Jeltrate™,Hydrogum™ e Orthoprint™) by the plaster type III (Rio™) under the influence of disinfection by sodium hypochlorite 1% sprays and the time of storage of 15 minutes,30 minutes, 1 hour, 6, 12 and 24 hours. There were made 60 impressions of each brand of alginate divided in two groups (water and sodium hypochlorite 1%) rearranged after the application of the sodium hypochlorite spray according to the storage time (15 or 30 minutes and 1,6,12, or 24 hours). On the surface of the impressions 2ml of plaster were flowed, proportioned and condensed in agreement with manufacturer‘s instructions. After the final setting expansion the casts were sectioned vertically and medially, regularized at the cut surface (emery paper 400) and setted for reading the contact angle at the microscope Carl Zeiss. The obtained results, submitted to statistical treatment (ANOVA) revealed significant differences when compared the employed solutions (water and sodium hypochlorite 1%) and the time of storage. The sodium hypochlorite 1% exhibited the smallest contact angles and the times of storage of 15 minutes and 6 hours the smallest and larger angles, respectively. It can be concluded that the alginate impressions exhibited larger adaptation to the plaster when disinfected by hypochlorite of sodium 1% and stocked by 15 minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface treatments have been used to modify the surface of titanium alloys. The purpose of this study is to evaluate the surface of Ti-30Ta alloy after biomimetic approach associated to antibiotic incorporation. The ingots were obtained in arc melting furnace, treated and cold-worked by swaging. The surface treatment was performed in two steps: biomimetic treatment and antibiotic incorporation. For biomimetic treatment, first an alkaline treatment (NaOH 1M at 60ºC) was performed, followed by heat treatment and immersion in SBFx5 (Simulated Body Fluid) for a period of 24 hours. In order to incorporate the antibiotic, samples were immersed in a solution formed by drugs plus SBFx5 for 48 hours. The sample surfaces were analyzed by scanning electron microscopy (SEM), X-Ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements. The release of antibiotic from coated implants was measured in phosphate buffer saline at pH 7.4 by using UV/VIS spectrometry. Results have shown changes on the surface after incorporating the drug, which is gradually co-precipitated with the Ca-P crystals, forming a uniform and rough layer on the metal surface