723 resultados para Meningitis, Cerebrospinal
Resumo:
Rabbits models of bacterial meningitis have contributed substantially to our understanding of the disease, although the technical characteristics of these models only allow the study of specific aspects of the disease. Bacterial multiplication in the subarachnoidal space is not substantially influenced by host defense mechanisms, mainly because of the lack of sufficient amounts of specific antibodies and functional complement in infected CSF. The multiplying bacteria induce profound changes in the blood-brain barrier, an influx of serum proteins into the CSF and the invasion of polymorphonuclear leukocytes at the site of the infection. The presence of polymorphonuclear leukocytes in CSF not only appears to be of limited value in combating the infection, but also seems to produce deleterious effects on the central nervous system. Components of the leukocytes, such as unsaturated fatty acids, arachidonic metabolites and free oxygen radicals, may contribute to the profound hydrodynamic, structural and metabolic changes that are currently under study in experimental models of the disease. A better understanding of the pathophysiology of bacterial meningitis may allow us to design more effective therapeutic strategies and improve the outcome of this disease.
Resumo:
Neuropeptide Y (NPY), which is found in high concentrations in several regions of the brain including nuclei of the brain stem and in nerve fibers surrounding cerebral vessels, has been proposed to play a role in regulating cerebral blood flow (CBF) and systemic vegetative functions. Since CBF is altered during meningitis, we examined whether NPY concentrations changed in various regions of the rabbit brain in response to experimental pneumococcal meningitis. Changes were most pronounced in the medulla, where NPY concentration increased threefold after 48 h of infection. Concomitantly, there was an increase in NPY immunoreactive fibers surrounding small vessels in the dorsolateral medulla, especially in the nucleus tractus solitarius. These results suggest that NPY may play a role in inducing some of the hemodynamic changes seen during pneumococcal meningitis.
Resumo:
Pneumococcal meningitis is associated with caspase 3-dependent apoptosis of recently post-mitotic immature neurons in the dentate gyrus of the hippocampus. The death of these cells is implicated in the learning and memory deficits in patients surviving the disease. The stress-activated protein kinase c-Jun N-terminal kinase (JNK) has been shown to be an important mediator of caspase 3-dependent neuronal apoptosis. However, whether JNK is involved in hippocampal apoptosis caused by pneumococcal meningitis has so far not been investigated. Here we show in a neonatal rat model of pneumococcal meningitis that JNK3 but not JNK1 or JNK2 is activated in the hippocampus during the acute phase of infection. At the cellular level, JNK3 activation was accompanied in the dentate gyrus by markedly increased phosphorylation of its major downstream target c-Jun in early immature (Hu-positive) neurons, but not in migrating (doublecortin-positive) neurons, the cells that do undergo apoptosis. These findings suggested that JNK may not be involved in pneumococcal meningitis-induced hippocampal apoptosis. Indeed, although intracerebroventricular administration of D-JNKI-1 or AS601245 (two highly specific JNK inhibitors) inhibited c-Jun phosphorylation and protein expression in the hippocampus, hippocampal apoptosis was unaffected. Collectively, these results demonstrate that JNK does not mediate hippocampal apoptosis in pneumococcal meningitis, and that JNK may be involved in processes unrelated to apoptosis in this disease.
Resumo:
OBJECTIVE: Meticulous sealing of opened air cells in the petrous bone is necessary for the prevention of cerebrospinal fluid (CSF) fistulae after vestibular schwannoma surgery. We performed a retrospective analysis to determine whether muscle or fat tissue is superior for this purpose. METHODS: Between January 2001 and December 2006, 420 patients underwent retrosigmoidal microsurgical removal by a standardized procedure. The opened air cells at the inner auditory canal and the mastoid bone were sealed with muscle in 283 patients and with fat tissue in 137 patients. Analysis was performed regarding the incidence of postoperative CSF fistulae and correlation with the patient's sex and tumor grade. RESULTS: The rate of postoperative CSF leak after application of fat tissue was lower (2.2%) than after use of muscle (5.7%). Women had less postoperative CSF leakage (3.4%) than men (5.6%). There was an inverse correlation with tumor grade. Patients with smaller tumors seemed to have a higher rate of CSF leakage than those with large tumors without hydrocephalus. Only large tumors with severe dislocation of the brainstem causing hydrocephalus showed a higher incidence of CSF leaks. CONCLUSION: Fat implantation is superior to muscle implantation for the prevention of CSF leakage after vestibular schwannoma surgery and should, therefore, be used for the sealing of opened air cells in cranial base surgery.
Resumo:
OBJECTIVES: To test the efficacy of EDP-420, a new ketolide, in experimental pneumococcal meningitis and to determine its penetration into the CSF. METHODS: The experimental rabbit model was used in this study and EDP-420 was tested against a penicillin-resistant and a penicillin- and quinolone-resistant mutant. EDP-420 was also tested against both strains in time-killing assays over 8 h in vitro. RESULTS: In experimental meningitis, EDP-420 produced a bactericidal activity comparable to the standard regimen based on a combination of vancomycin with ceftriaxone against a penicillin-resistant Streptococcus pneumoniae and a penicillin- and quinolone-resistant S. pneumoniae isolate. The penetration of EDP-420 into inflamed meninges was 38% after an i.v. injection of 10 mg/kg. The bactericidal activity of EDP-420 was also confirmed in in vitro time-killing assays. CONCLUSIONS: EDP-420 is an efficacious alternative treatment in pneumococcal meningitis, especially when resistant strains are suspected.
Resumo:
Excitatory amino acids (EAA) and particularly glutamate toxicity have been implicated in the pathogenesis of neuronal injury occurring in bacterial meningitis by activating the N-methyl-d aspartate (NMDA) receptor complex. Here, we evaluated the effect of adjuvant treatment with the antitussive drug dextromethorphan (DM), a non-competitive NMDA receptor antagonist with neuroprotective potential, in an infant rat model of pneumococcal meningitis. The experiments were carried out in postnatal day 6 (P6) and 11 (P11) animals. Pharmacokinetics of DM and its major metabolite dextrorphan (DO) were performed for dose finding. In our study, DM did not alter clinical parameters (clinical score, motor activity, incidence of seizures, spontaneous mortality) and cortical neuronal injury but increased the occurrence of ataxia (P<0.0001). When DM treatment was started at the time of infection (DM i.p. 15 mg/kg at 0, 4, 8 and 16 hours (h) post infection) in P11 animals, an aggravation of apoptotic neuronal death in the hippocampal dentate gyrus was found (P<0.05). When treatment was initiated during acute pneumococcal meningitis (DM i.p. 15 mg/kg at 12 and 15 h and 7.5 mg/kg at 18 and 21 h after infection), DM had no effect on the extent of brain injury but reduced the occurrence of seizures (P<0.03). We conclude that in this infant rat model of pneumococcal meningitis interference of the EEA and NMDA pathway using DM causes ataxia, attenuates epileptic seizures and increases hippocampal apoptosis, but is not effective in protecting the brain from injury.
Resumo:
OBJECT: The aim of this study was to identify patients likely to develop CSF leaks after vestibular schwannoma surgery using a retrospective analysis for the identification of risk factors. METHODS: Between January 2001 and December 2006, 420 patients underwent retrosigmoidal microsurgical tumor removal in a standardized procedure. Of these 420 patients, 363 underwent treatment for the first time, and 27 suffered from recurrent tumors. Twenty-six patients had bilateral tumors due to neurofibromatosis Type 2, and 4 patients had previously undergone radiosurgical treatment. An analysis was performed to examine the incidence of postoperative CSF fistulas in all 4 groups. RESULTS: The incidence of CSF leakage was higher in the tumor recurrence group (11.1%) than in patients undergoing surgery for the first time (4.4%). There were no CSF fistulas in the neurofibromatosis Type 2 group or in patients with preoperative radiosurgical treatment. Tumor size was identified as a possible risk factor in a previous study. CONCLUSIONS: Surgery for recurrent tumors is a significant risk factor for the development of CSF leaks.
Resumo:
OBJECTIVE: Multiple studies have proved that microvascular decompression (MVD) is the treatment of choice in cases of medically refractory trigeminal neuralgia (TN). In the elderly, however, the surgical risks related to MVD are assumed to be unacceptably high and various alternative therapies have been proposed. We evaluated the outcomes of MVD in patients aged older than 65 years of age and compared them with the outcomes in a matched group of younger patients. The focus was on procedure-related morbidity rate and long-term outcome. METHODS: This was a retrospective study of 112 patients with TN operated on consecutively over 22 years. The main outcome measures were immediate and long-term postoperative pain relief and neurological status, especially function of trigeminal, facial, and cochlear nerves, as well as surgical complications. A questionnaire was used to assess long-term outcome: pain relief, duration of a pain-free period, need for pain medications, time to recurrence, pain severity, and need for additional treatment. RESULTS: The mean age was 70.35 years. The second and third branches of the trigeminal nerve were most frequently affected (37.3%). The mean follow-up period was 90 months (range, 48-295 months). Seventy-five percent of the patients were completely pain free, 11% were never pain free, and 14% experienced recurrences. No statistically significant differences existed in the outcome between the younger and older patient groups. Postoperative morbidity included trigeminal hypesthesia in 6.25%, hypacusis in 5.4%, and complete hearing loss, vertigo, and partial facial nerve palsy in 0.89% each. Cerebrospinal fluid leak and meningitis occurred in 1 patient each. There were no mortalities in both groups. CONCLUSION: MVD for TN is a safe procedure even in the elderly. The risk of serious morbidity or mortality is similar to that in younger patients. Furthermore, no significant differences in short- and long-term outcome were found. Thus, MVD is the treatment of choice in patients with medically refractory TN, unless their general condition prohibits it.
Resumo:
BACKGROUND: The role of endothelin-1 (ET-1) and nitric oxide (NO) as two important mediators in the development of cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH) is controversial. The objective of this study was to determine whether local levels of ET-1 and NO in cerebral arterial plasma and/or in cerebrospinal fluid (CSF) are associated with the occurrence of CVS after SAH. METHODS: CVS was induced using the one-haemorrhage rabbit model and confirmed by digital subtraction angiography of the rabbits' basilar artery on day 5. Prior to sacrifice, local CSF and basilar arterial plasma samples were obtained by a transclival approach to the basilar artery. Systemic arterial plasma samples were obtained. ET-1 levels were determined by immunometric technique (pg/ml +/- SEM) and total nitrate/nitrite level spectrophotometrically (micromol/l +/- SEM). FINDINGS: Angiographic CVS was documented after SAH induction (n = 12, P < 0.05). The ET-1 level in CSF was significantly elevated by 27.3% to 0.84 +/- 0.08 pg/ml in SAH animals (n = 7) in comparison to controls (0.66 +/- 0.04 pg/ml, n = 7, P < 0.05). There was no significant difference in ET-1 levels in systemic and basilar arterial plasma samples of SAH animals compared to controls. A significant lack of local NO metabolites was documented in basilar arterial plasma after SAH (36.8 +/- 3.1 micromol/l, n = 6) compared to controls (61.8 +/- 6.2 micromol/l, n = 6, P < 0.01). CONCLUSION: This study demonstrates that an elevated ET-1 level in CSF and local lack of NO in the basilar arterial plasma samples are associated with CVS after experimental SAH.
Resumo:
The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammation.
Resumo:
Forty Escherichia coli strains isolated primarily from neonatal meningitis, urinary tract infections and feces were screened for the presence of virulence genes with a newly developed microarray on the array tube format. A total of 32 gene probes specific for extraintestinal as well as intestinal E. coli pathotypes were included. Eighty-eight percent of the analyzed strains were positive for the K1-specific probe on the microarray and could be confirmed with a specific antiserum against the K1 capsular polysaccharide. The gene for the hemin receptor ChuA was predominantly found in 95% of strains. Other virulence genes associated with K1 and related strains were P, S, and F1C fimbriae specific for extraintestinal E. coli, the genes for aerobactin, the alpha-hemolysin and the cytotoxic necrotizing factor. In two strains, the O157-specific catalase gene and the gene for the low-molecular-weight heat-stable toxin AstA were detected, respectively. A total of 19 different virulence gene patterns were observed. No correlation was observed between specific virulence gene patterns and a clinical outcome. The data indicate that virulence genes typical of extraintestinal E. coli are predominantly present in K1 strains. Nevertheless, some of them can carry virulence genes known to be characteristic of intestinal E. coli. The distribution and combination of virulence genes show that K1 isolates constitute a heterogeneous group of E. coli.
Resumo:
Objectives: To determine HIV-1 RNA in cerebrospinal fluid (CSF) of successfully treated patients and to evaluate if combination antiretroviral treatments with higher central nervous system penetration-effectiveness (CPE) achieve better CSF viral suppression. Methods: Viral loads (VLs) and drug concentrations of lopinavir, atazanavir, and efavirenz were measured in plasma and CSF. The CPE was calculated using 2 different methods. Results: The authors analyzed 87 CSF samples of 60 patients. In 4 CSF samples, HIV-1 RNA was detectable with 43–82 copies per milliliter. Median CPE in patients with detectable CSF VL was significantly lower compared with individuals with undetectable VL: CPE of 1.0 (range, 1.0–1.5) versus 2.3 (range, 1.0–3.5) using the method of 2008 (P = 0.011) and CPE of 6 (range, 6–8) versus 8 (range, 5–12) using the method of 2010 (P = 0.022). The extrapolated CSF trough levels for atazanavir (n = 12) were clearly above the 50% inhibitory concentration (IC50) in only 25% of samples; both patients on atazanavir/ritonavir with detectable CSF HIV-1 RNA had trough levels in the range of the presumed IC50. The extrapolated CSF trough level for lopinavir (n = 42) and efavirenz (n = 18) were above the IC50 in 98% and 78%, respectively, of samples, including the patients with detectable CSF HIV-1 RNA. Conclusions: This study suggests that treatment regimens with high intracerebral efficacy reflected by a high CPE score are essential to achieve CSF HIV-1 RNA suppression. The CPE score including all drug components was a better predictor for treatment failure in the CSF than the sole concentrations of protease inhibitor or nonnucleoside reverse transcriptase inhibitor in plasma or CSF.
Resumo:
Objective: To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. Design: The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. Methods: Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1–42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. Results: In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. Conclusion: Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.