902 resultados para Melatonin -- Physiological effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fall armyworm, Spodoptera frugiperda, is one of the major field pests for maize production. It is mainly controlled by means of synthetic, and more recently by resistant cultivar of maize expressing Bt toxins. The neem tree, Azadirachta indica, is a plant that can potentially control insects with the advantage of being food and environmental safe. The aim of this study was to assess the effect of neem oil on the development and survival of S. frugiperda caterpillars by assessing histological alterations caused on their midgut. Newly hatched caterpillars were submitted to three neem oil concentrations: 0.006; 0.05; 0.4%, which were added to their artificial diet. Ten 3rd instar caterpillars, taken from each treatment, were submitted to histological analysis. The alimentary canals from the specimens were fixed in Baker for 12 hours, desiccated and diaphanized in alcohol/xylol (1:1) and xylol. After placing the samples in paraffin, they were sliced in 8 µm sections and stained with hematoxylin-eosin stain. The neem oil added to the diet of S. frugiperda caused total mortality at dose of 0.4% whilst still in the first instars, prolonged the larval and pupal stages, and reduced the pupal weight. Histo-physiological alterations such as degeneration of the epithelial lining of the midgut and in the peritrophic matrix were found at all concentrations of neem oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: V itamin D is an important modulator o fnumerous c ellular processes, including innate and adaptive immunepathways. A recent large-scale genetic validation study performed withinthe framework of the Swiss Hepatitis C Cohort S tudy has demonstratedan association between t he 1α-hydroxylase promoter single nucleotidepolymorphism CYP27B1-1260 rs10877012 and sustained virologicresponse (SVR) after pegylated interferon-α ( PEG-IFN-α) plus ribavirintreatment of c hronic hepatitis C in patients w ith a p oor-response IL28Bgenotype. This suggests an intrinsic role o f vitamin D signaling in theresponse t o treatment of chronic hepatitis C, especially in patients withlimited sensitivity to IFN-α. In the present study, we investigated theeffect of 1,25-(OH)2 v itamin D3 (calcitriol) alone or in combination withIFN-α on the hepatitis C virus (HCV) life cycle in vitro.Methods: H uh-7.5 cells harboring Con1- or JFH-1-derived HCVreplicons or cell culture-derived HCV were exposed to 0.1-100 nMcalcitriol ± 1 -100 IU/ml IFN-α. The effect on HCV RNA replication andviral particle production was investigated by quantitative r eal-time PCR,immunoblot analyses, and infectivity titration analyses. The expression ofinterferon-stimulated genes (ISGs) and of calcitriol target genes wasassessed by quantitative real-time PCR.Results: Calcitriol had no relevant effect on the viability of Huh-7.5 cells.Calcitriol strongly induced and repressed the expression of the calcitrioltarget genes CYP24A1 and CCNC, respectively, confirming that Huh-7.5cells c an respond to c alcitriol signaling. P hysiological doses of calcitrioldid not significantly a ffect HCV RNA replication or i nfectious particleproduction in vitro, and calcitriol alone h ad no significant effect on theexpression of several ISGs. However, calcitriol in combination with IFN-αsubstantially increased the expression of ISGs compared to IFN-α alone.In addition, calcitriol plus IFN-α s ynergistically inhibited HCV RNAreplication.Conclusions: C alcitriol at physiological concentrations and IFN-α a ctsynergistically on the expression of I SGs and HCV RNA replication i nvitro. Experiments exploring the underlying mechanisms are underway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: Aging adults represent the fastest growing population segment in many countries. Physiological and metabolic changes in the aging process may alter how aging adults respond to exposures compared to younger workers. Current preventive workplace exposure measures may therefore not be sufficiently protective for the aging workforce. In a controlled human toxicokinetic study (exposure chamber; 12m3), the volunteers (n=11) were men and women over the age of 58 years and exposed to a commonly used, low neurotoxic glycol ether; PGME (CAS no. 107-98- 2) (50 ppm, 6 hours). Oxidative metabolism (Michaelis-Menten) is the major pathway and conjugation the minor in humans. Metabolites, conjugated and free PGME are eliminated through the kidneys, and the elimination kinetics is dose-dependent (0 order). Scope: (1) compare the toxicokinetic profile of PGME obtained in the aging volunteers (58- 62 years) to young volunteers (20-25 years) from a previous study; (2) Test the predictive power of an existing PGME toxicokinetic compartment model for aging persons against urinary PGME concentrations found in volunteers from our experimental study. Experimental procedure: Urine samples were collected before, every 2-hour during exposures for six hours, and ad-lib for additional 20 hours. Urinary analysis of free and total PGME was performed using capillary GC/FID. The toxicokinetic model (Berkley Madonna software) was ageadjusted. Results. Urinary free and total PGME concentration rose rapidly, and did not reach an apparent plateau level during exposure. Less conjugation was observed in the older group. The predictive model developed for the young group predicted well total PGME in the aging group but not free PGME. The age adjusted toxicokinetic model's Vmax1 had to be changed for the aging group, implying slower enzymatic pathway. Conclusion: The toxicokinetic model did not predict well if only the physiological parameters were adjusted for aging adults (existing model); a substance specific metabolic rate parameter was also needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Barbiturate-induced coma can be used in patients to treat intractable intracranial hypertension when other therapies, such as osmotic therapy and sedation, have failed. Despite control of intracranial pressure, cerebral infarction may still occur in some patients, and the effect of barbiturates on outcome remains uncertain. In this study, we examined the relationship between barbiturate infusion and brain tissue oxygen (PbtO2). METHODS: Ten volume-resuscitated brain-injured patients who were treated with pentobarbital infusion for intracranial hypertension and underwent PbtO2 monitoring were studied in a neurosurgical intensive care unit at a university-based Level I trauma center. PbtO2, intracranial pressure (ICP), mean arterial pressure, cerebral perfusion pressure (CPP), and brain temperature were continuously monitored and compared in settings in which barbiturates were or were not administered. RESULTS: Data were available from 1595 hours of PbtO2 monitoring. When pentobarbital administration began, the mean ICP, CPP, and PbtO2 were 18 +/- 10, 72 +/- 18, and 28 +/- 12 mm Hg, respectively. During the 3 hours before barbiturate infusion, the maximum ICP was 24 +/- 13 mm Hg and the minimum CPP was 65 +/- 20 mm Hg. In the majority of patients (70%), we observed an increase in PbtO2 associated with pentobarbital infusion. Within this group, logistic regression analysis demonstrated that a higher likelihood of compromised brain oxygen (PbtO2 < 20 mm Hg) was associated with a decrease in pentobarbital dose after controlling for ICP and other physiological parameters (P < 0.001). In the remaining 3 patients, pentobarbital was associated with lower PbtO2 levels. These patients had higher ICP, lower CPP, and later initiation of barbiturates compared with patients whose PbtO2 increased. CONCLUSION: Our preliminary findings suggest that pentobarbital administered for intractable intracranial hypertension is associated with a significant and independent increase in PbtO2 in the majority of patients. However, in some patients with more compromised brain physiology, pentobarbital may have a negative effect on PbtO2, particularly if administered late. Larger studies are needed to examine the relationship between barbiturates and cerebral oxygenation in brain-injured patients with refractory intracranial hypertension and to determine whether PbtO2 responses can help guide therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the maternal transfer of antibodies in natural host-parasite systems despite its possible evolutionary and ecological implications. In domestic animals, the maternal transfer of antibodies can enhance offspring survival via a temporary protection against parasites, but it can also interfere with the juvenile immune response to antigens. We tested the functional role of maternal antibodies in a natural population of a long-lived colonial seabird, the kittiwake (Rissa tridactyla), using a vaccine (Newcastle disease virus vaccine) to mimic parasite exposure combined with a cross-fostering design. We first investigated the role of prior maternal exposure on the interannual transmission of Ab to juveniles. We then tested the effect of these antibodies on the juvenile immune response to the same antigen. The results show that specific maternal antibodies were transferred to chicks 1 year after maternal exposure and that these antibodies were functional, i.e. they affected juvenile immunity. These results suggest that the role of maternal antibodies may depend on the timing and pattern of offspring exposure to parasites, along with the patterns of maternal exposure and the dynamics of her immune response. Overall, our approach underlines that although the transgenerational transfer of antibodies in natural populations is likely to have broad implications, the nature of these effects may vary dramatically among host-parasite systems, depending on the physiological mechanisms involved and the ecological context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium participates in the essential processes in plant physiology, however, the effects of K sources on plant metabolism have been little studied. Also, in certain cases, K sources and concentrations may cause undesirable effects, e.g., soil salinization. The objective was to evaluate the effect of K sources and levels on the enzyme activity of the antioxidant system and protein content in eggplant (Solanum melongena L.) leaves and to determine the most suitable K sources for these physiological characteristics. The experiment was conducted in randomized blocks, in a 2 × 4 factorial design, consisting of two K sources (KCl and K2SO4) and rates (250, 500, 750, and 1000 kg ha-1 K2O), with four replications. The following variables were evaluated: plant height, number of leaves per plant, superoxide dismutase (SOD), catalase (CAT), and leaf protein content. There was an increase in CAT activity with increasing K levels until 30 days after transplanting (DAT), when K2SO4 was applied and until 60 DAT, when KCl was used; after this period, the enzyme activity decreased under both sources. The activity of SOD increased in the presence of KCl, but was reduced with the application of K2SO4. For both K sources, increasing rates reduced the protein content and number of leaves per plant, and this reduction was greater under KCl application. Thus it was concluded that KCl tends more strongly to salinize the soil than K2SO4. Both for KCl and for K2SO4, the increasing rates adversely affected the activities of CAT and SOD and the levels of leaf protein in eggplant. The potential of KCl to reduce the enzyme activity of SOD and CAT, leaf protein content and plant growth of eggplant was stronger than that of K2SO4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese (Mn(2+))-enhanced magnetic resonance imaging studies of the neuronal pathways of the hypothalamus showed that information about the regulation of food intake and energy balance circulate through specific hypothalamic nuclei. The dehydration-induced anorexia (DIA) model demonstrated to be appropriate for studying the hypothalamus with Mn(2+)-enhanced magnetic resonance imaging. Manganese is involved in the normal functioning of a variety of physiological processes and is associated with enzymes contributing to neurotransmitter synthesis and metabolism. It also induces psychiatric and motor disturbances. The molecular mechanisms by which Mn(2+) produces alterations of the hypothalamic physiological processes are not well understood. (1)H-magnetic resonance spectroscopy measurements of the rodent hypothalamus are challenging due to the distant location of the hypothalamus resulting in limited measurement sensitivity. The present study proposed to investigate the effects of Mn(2+) on the neurochemical profile of the hypothalamus in normal, DIA, and overnight fasted female rats at 14.1 T. Results provide evidence that γ-aminobutyric acid has an essential role in the maintenance of energy homeostasis in the hypothalamus but is not condition specific. On the contrary, glutamine, glutamate, and taurine appear to respond more accurately to Mn(2+) exposure. An increase in glutamine levels could also be a characteristic response of the hypothalamus to DIA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.