952 resultados para Medical Knowledge


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to assess the healthcare information needs of decision-makers in a local US healthcare setting in efforts to promote the translation of knowledge into action. The focus was on the perceptions and preferences of decision-makers regarding usable information in making decisions as to identify strategies to maximize the contribution of healthcare findings to policy and practice. Methods: This study utilized a qualitative data collection and analysis strategy. Data was collected via open-ended key-informant interviews from a sample of 37 public and private-sector healthcare decision-makers in the Houston/Harris County safety net. The sample was comprised of high-level decision-makers, including legislators, executive managers, service providers, and healthcare funders. Decision-makers were asked to identify the types of information, the level of collaboration with outside agencies, useful attributes of information, and the sources, formats/styles, and modes of information preferred in making important decisions and the basis for their preferences. Results: Decision-makers report acquiring information, categorizing information as usable knowledge, and selecting information for use based on the application of four cross-cutting thought processes or cognitive frameworks. In order of apparent preference, these are time orientation, followed by information seeking directionality, selection of validation processes, and centrality of credibility/reliability. In applying the frameworks, decision-makers are influenced by numerous factors associated with their perceptions of the utility of information and the importance of collaboration with outside agencies in making decisions as well as professional and organizational characteristics. Conclusion: An approach based on the elucidated cognitive framework may be valuable in identifying the reported contextual determinants of information use by decision-makers in US healthcare settings. Such an approach can facilitate active producer/user collaborations and promote the production of mutually valued, comprehensible, and usable findings leading to sustainable knowledge translation efforts long-term.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, adverse events and medical errors have become a main focus of interest for the standards of quality and safety in the U.S. healthcare system (Weinstein & Henderson, 2009). Particularly when a medical error occurs, the disclosure of medical errors and its practices have become a focal point of the healthcare process. Patients and family members who have experienced a medical error might be able to provide knowledge and insight on how to improve the disclose process. However, patient and family member are not typically involved in the disclosure process, thus their experiences go unnoticed. ^ The purpose of this research was to explore how best to include patients and family members in the disclosure process regarding a medical error. The research consisted of 28 qualitative interviews from three stakeholder groups: Hospital Administrators, Clinical Service Providers, and Patients and Family Members. They were asked for their ideas and suggestions on how best to include patients and family members in the disclosure process. Framework Analysis was used to analyze this data and find prevalent themes based on the primary research question. A secondary aim was to index categories created based on the interviews that were collected. Data was used from the Texas Disclosure and Compensation Study with Dr. Eric Thomas as the Principal Investigator. Full acknowledgement of access to this data is given to Dr. Thomas. ^ The themes from the research revealed that each stakeholder group was interested and open to including patients and family members in the disclosure process and that the disclosure process should not be a "one-way" avenue. The themes gave many suggestions regarding how to best include patients and family members in the disclosure process of a medical error. Secondary aims revealed several ways to assess the ideas and suggestion given by the stakeholders. Overall, acceptability of getting the perspective of patients and family members was the most common theme. Comparison of each stakeholder group revealed that including patients and family members would be beneficial to improving hospital disclosure practices. ^ Conclusions included a list of recommendations and measureable appropriate strategies that could provide hospital with key stakeholders insights on how to improve their disclosure process. Sharing patients and family members experience with healthcare providers can encourage a shift in culture where patients are valued and active in participating in hospital practices. To my knowledge, this research is the very first of its kind and moves the disclosure process conversation forward in a patient-family member inclusion direction that will assist in improving disclosure practices. Future research should implement and evaluate the success of the various inclusion strategies.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess whether provision of educational leaflets or questions on contraception improves knowledge of contraception in women taking the combined contraceptive pill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To explore how general practitioners have accessed and evaluated evidence from trials on the use of statin lipid lowering drugs and incorporated this evidence into their practice. To draw out the practical implications of this study for strategies to integrate clinical evidence into general medical practice.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because it is widely accepted that providing information online will play a major role in both the teaching and practice of medicine in the near future, a short formal course of instruction in computer skills was proposed for the incoming class of students entering medical school at the State University of New York at Stony Brook. The syllabus was developed on the basis of a set of expected outcomes, which was accepted by the dean of medicine and the curriculum committee for classes beginning in the fall of 1997. Prior to their arrival, students were asked to complete a self-assessment survey designed to elucidate their initial skill base; the returned surveys showed students to have computer skills ranging from complete novice to that of a systems engineer. The classes were taught during the first three weeks of the semester to groups of students separated on the basis of their knowledge of and comfort with computers. Areas covered included computer basics, e-mail management, MEDLINE, and Internet search tools. Each student received seven hours of hands-on training followed by a test. The syllabus and emphasis of the classes were tailored to the initial skill base but the final test was given at the same level to all students. Student participation, test scores, and course evaluations indicated that this noncredit program was successful in achieving an acceptable level of comfort in using a computer for almost all of the student body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the curriculum at Queen’s-affiliated medical colleges, specifically The Royal College of Physicians and Surgeons, Kingston, the Kingston Women’s Medical College, and Queen’s Medical College, from 1881 to 1910, using the textbooks prescribed by these institutions as primary sources. The central question encompasses what factors primarily motivated the curriculum at Queen’s-affiliated medical colleges to change. Within the historiographical scholarship on Queen’s College, this question has not yet been addressed and, to my knowledge, this is the first medical education history to specifically address textbooks as part of a medical school curriculum. During this period, these institutions experienced reorganizational shifts, such as the reunification of Queen’s Medical College with The Royal College of Physicians and Surgeons, Kingston, as well as the introduction and subsequent exclusion of female students. Within this context, this study examines how the forces of scientific innovation and co-education impacted the curriculum during the period under study, as measured by textbook change, specifically in the courses of obstetrics and gynaecology, the theory and practice of medicine, and surgery. To what degree was curriculum in these courses responsive to scientific inventions and discoveries, changing therapeutic practices, and possible gender biases? From 1881 to 1910, innovations such as x-ray and anaesthesia became commonplace within medical practice. Some technologies gained acceptance in the curriculum, while others fell out of favour. This study tracks these scientific discoveries through the textbooks used at Queen’s-affiliated medical colleges in order to demonstrate how the evolving nature of medicine was represented in the curriculum. To address how gender influenced the curriculum, textbooks from the Kingston Women’s Medical College and The Royal College of Physicians and Surgeons, Kingston, were compared. For two out of the three examined courses, it was found that sections of textbooks discussing various topics at the Kingston Women’s Medical College contained significantly more detail than their corresponding sections within The Royal College’s textbooks. It was speculated that the instructors preferred to teach their female students through textbooks, rather than lectures.