913 resultados para Mean shift
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
This paper examines the asymmetric behavior of conditional mean and variance. Short-horizon mean-reversion behavior in mean is modeled with an asymmetric nonlinear autoregressive model, and the variance is modeled with an Exponential GARCH in Mean model. The results of the empirical investigation of the Nordic stock markets indicates that negative returns revert faster to positive returns when positive returns generally persist longer. Asymmetry in both mean and variance can be seen on all included markets and are fairly similar. Volatility rises following negative returns more than following positive returns which is an indication of overreactions. Negative returns lead to increased variance and positive returns leads even to decreased variance.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.
Resumo:
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.
Resumo:
The chemical-shift of the X-ray K-absorption edge of Co was studied in a large number of compounds, complexes (spinels) and minerals of Co in its different oxidation states having widely different crystal structures and containing different types of bonding and various types of ligands, and were reported collectively, for the first time, in a single paper. A quadratic relationship was established on the basis of least-squares regression analysis to hold between the chemical-shift and the effective charge on the absorbing atom, but the dominance of the linear term was shown. This relation was utilized in evaluating the charge on the Co-ion in a number of minerals. The effect on chemical-shift of oxidation states of the absorbing atom, of the bond length, crystal structure and higher shell atoms of the molecule, and of electronegativity, atomic number and ionic radius of the ligand was discussed.
Resumo:
The 1,2-shift observed during oxidation of organic substrates can arise by involvement of cation radicals.
Resumo:
Background When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception. Methodology/Principal Findings Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed. Conclusions/Significance Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.
Resumo:
An invariant imbedding method yields exact analytical results for the distribution of the phase theta (L) of the reflection amplitude and for low-order resistance moments (pn) for a disordered conductor of length L in the quasi-metallic regime L<
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010
Resumo:
A Green's function technique is used in the scattering matrix formalism to compute the mean square displacement of hydrogen and deuterium interstitials in the intermetallic compound Fe0.5Ti0.5 for low hydrogen/deuterium concentration. The mean square amplitudes of the metal atoms surrounding the interstitial are found to be smaller than those for the host crystal. This anomalous effect is due to the stiffening of the lattice by the dissolved hydrogen or deuterium at low concentration. This type of effect is experimentally observed in the case of NbHx at low hydrogen concentration.
Resumo:
Heteronuclear multiple-quantum coherence relaxation rate are calculated for the individual transitions of the S spin in an AIS nuclear spin system assuming that the heteronucleus (S spin) has relaxation contributions from both intramolecular dipole-dipole and chemical shift anisotropy relaxation. The individual multiplet components of the heteronuclear zero- and double-quantum coherences are shown to have different transverse relaxation rates. The cross-correlation between the two relaxation mechanisms is shown to be the dominant cause of the calculated differential line broadening. Experimental data are presented using as an example a uniformly 15N labelled sample of human epidermal growth factor.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.