965 resultados para Mean Field Analysis
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
HIV attachment via the CD4 receptor is an important target for developing novel approaches to HIV chemotherapy. Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. An effective five-step synthesis of CADA in 30% overall yield is reported. This synthesis has also been modified to produce more than 50 analogues. Many tail-group analogues have been made by removing the benzyl tail of CADA and replacing it with various alkyl, acyl, alkoxycarbonyl and aminocarbonyl substituents. A series of sidearm analogues, including two unsymmetrical compounds, have also been prepared by modifying the CADA synthesis, replacing the toluenesulfonyl sidearms with other sulfonyl groups. Testing 30 of these compounds in MT-4 cells shows a wide range of CD4 down-modulation potency, which correlates with ability to inhibit HIV-1. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The X-ray crystal structures of four compounds, including CADA, show the same major conformation of the central 12-membered ring. The solid-state structure of CADA was energy minimized and used to generate the remaining 29 structures, which were similarly minimized and aligned to produce the 3D-QSAR models. Both models indicate that steric bulk of the tail group, and, to a lesser extent, the sidearms mainly determine CD4 down-modulation potency in this series of compounds.
Resumo:
Using self-consistent field theory (SCFT), we investigate the morphologies formed by a melt brush of AB diblock copolymers grafted to a flat substrate by their B ends. In addition to a laterally uniform morphology, SCFT predicts three ordered morphologies exhibiting different periodic patterns at the air surface: a hexagonal array of A-rich dots, an alternating sequence of A- and B-rich stripes, and a hexagonal pattern of B-rich dots. When the phase diagram of the tethered film is plotted as a function of A/B incompatibility, $\chi N$, and diblock composition, $f$, it resembles the bulk phase diagram with the periodic phases converging to a mean-field critical point at weak segregation. The periodic-phase region in the phase diagram shrinks with increasing grafting density and expands when the air surface acquires an affinity for the grafted B blocks.
Resumo:
The phase diagram for an AB diblock copolymer melt with polydisperse A blocks and monodisperse B blocks is evaluated using lattice-based Monte Carlo simulations. Experiments on this system have shown that the A-block polydispersity shifts the order-order transitions (OOTs) towards higher A-monomer content, while the order-disorder transition (ODT) moves towards higher temperatures when the A blocks form the minority domains and lower temperatures when the A blocks form the matrix. Although self-consistent field theory (SCFT) correctly accounts for the change in the OOTs, it incorrectly predicts the ODT to shift towards higher temperatures at all diblock copolymer compositions. In contrast, our simulations predict the correct shifts for both the OOTs and the ODT. This implies that polydispersity amplifies the fluctuation-induced correction to the mean-field ODT, which we attribute to a reduction in packing frustration. Consistent with this explanation, polydispersity is found to enhance the stability of the perforated-lamellar phase.
Resumo:
This study examines the numerical accuracy, computational cost, and memory requirements of self-consistent field theory (SCFT) calculations when the diffusion equations are solved with various pseudo-spectral methods and the mean field equations are iterated with Anderson mixing. The different methods are tested on the triply-periodic gyroid and spherical phases of a diblock-copolymer melt over a range of intermediate segregations. Anderson mixing is found to be somewhat less effective than when combined with the full-spectral method, but it nevertheless functions admirably well provided that a large number of histories is used. Of the different pseudo-spectral algorithms, the 4th-order one of Ranjan, Qin and Morse performs best, although not quite as efficiently as the full-spectral method.
Resumo:
We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, sub ject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other’s growth and encourage the other’s demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive peer-to-peer communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.
Resumo:
The “case for property” in the mixed-asset portfolio is a topic of continuing interest to practitioners and academics. Such an analysis typically is performed over a fixed period of time and the optimum allocation to property inferred from the weight assigned to property through the use of mean-variance analysis. It is well known, however, that the parameters used in the portfolio analysis problem are unstable through time. Thus, the weight proposed for property in one period is unlikely to be that found in another. Consequently, in order to assess the case for property more thoroughly, the impact of property in the mixed-asset portfolio is evaluated on a rolling basis over a long period of time. In this way we test whether the inclusion of property significantly improves the performance of an existing equity/bond portfolio all of the time. The main findings are that the inclusion of direct property into an existing equity/bond portfolio leads to increase or decreases in return, depending on the relative performance of property compared with the other asset classes. However, including property in the mixed-asset portfolio always leads to reductions in portfolio risk. Consequently, adding property into an equity/bond portfolio can lead to significant increases in risk-adjusted performance. Thus, if the decision to include direct property in the mixed-asset portfolio is based upon its diversification benefits the answer is yes, there is a “case for property” all the time!
Resumo:
A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.