842 resultados para Mathematical operators
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.
Resumo:
This paper includes the derivations of the main expressions in the paper ``The Daily Market for Funds in Europe: Has Something Changed With the EMU?'' by G. Pérez Quirós and H. Rodríguez Mendizábal.
Resumo:
BACKGROUND: New HIV infections in men who have sex with men (MSM) have increased in Switzerland since 2000 despite combination antiretroviral therapy (cART). The objectives of this mathematical modelling study were: to describe the dynamics of the HIV epidemic in MSM in Switzerland using national data; to explore the effects of hypothetical prevention scenarios; and to conduct a multivariate sensitivity analysis. METHODOLOGY/PRINCIPAL FINDINGS: The model describes HIV transmission, progression and the effects of cART using differential equations. The model was fitted to Swiss HIV and AIDS surveillance data and twelve unknown parameters were estimated. Predicted numbers of diagnosed HIV infections and AIDS cases fitted the observed data well. By the end of 2010, an estimated 13.5% (95% CI 12.5, 14.6%) of all HIV-infected MSM were undiagnosed and accounted for 81.8% (95% CI 81.1, 82.4%) of new HIV infections. The transmission rate was at its lowest from 1995-1999, with a nadir of 46 incident HIV infections in 1999, but increased from 2000. The estimated number of new infections continued to increase to more than 250 in 2010, although the reproduction number was still below the epidemic threshold. Prevention scenarios included temporary reductions in risk behaviour, annual test and treat, and reduction in risk behaviour to levels observed earlier in the epidemic. These led to predicted reductions in new infections from 2 to 26% by 2020. Parameters related to disease progression and relative infectiousness at different HIV stages had the greatest influence on estimates of the net transmission rate. CONCLUSIONS/SIGNIFICANCE: The model outputs suggest that the increase in HIV transmission amongst MSM in Switzerland is the result of continuing risky sexual behaviour, particularly by those unaware of their infection status. Long term reductions in the incidence of HIV infection in MSM in Switzerland will require increased and sustained uptake of effective interventions.
Resumo:
The Drivers Scheduling Problem (DSP) consists of selecting a set of duties for vehicle drivers, for example buses, trains, plane or boat drivers or pilots, for the transportation of passengers or goods. This is a complex problem because it involves several constraints related to labour and company rules and can also present different evaluation criteria and objectives. Being able to develop an adequate model for this problem that can represent the real problem as close as possible is an important research area.The main objective of this research work is to present new mathematical models to the DSP problem that represent all the complexity of the drivers scheduling problem, and also demonstrate that the solutions of these models can be easily implemented in real situations. This issue has been recognized by several authors and as important problem in Public Transportation. The most well-known and general formulation for the DSP is a Set Partition/Set Covering Model (SPP/SCP). However, to a large extend these models simplify some of the specific business aspects and issues of real problems. This makes it difficult to use these models as automatic planning systems because the schedules obtained must be modified manually to be implemented in real situations. Based on extensive passenger transportation experience in bus companies in Portugal, we propose new alternative models to formulate the DSP problem. These models are also based on Set Partitioning/Covering Models; however, they take into account the bus operator issues and the perspective opinions and environment of the user.We follow the steps of the Operations Research Methodology which consist of: Identify the Problem; Understand the System; Formulate a Mathematical Model; Verify the Model; Select the Best Alternative; Present the Results of theAnalysis and Implement and Evaluate. All the processes are done with close participation and involvement of the final users from different transportation companies. The planner s opinion and main criticisms are used to improve the proposed model in a continuous enrichment process. The final objective is to have a model that can be incorporated into an information system to be used as an automatic tool to produce driver schedules. Therefore, the criteria for evaluating the models is the capacity to generate real and useful schedules that can be implemented without many manual adjustments or modifications. We have considered the following as measures of the quality of the model: simplicity, solution quality and applicability. We tested the alternative models with a set of real data obtained from several different transportation companies and analyzed the optimal schedules obtained with respect to the applicability of the solution to the real situation. To do this, the schedules were analyzed by the planners to determine their quality and applicability. The main result of this work is the proposition of new mathematical models for the DSP that better represent the realities of the passenger transportation operators and lead to better schedules that can be implemented directly in real situations.
Resumo:
Proves de conversió de fòrmules matemàtiques des d'editors de text ofimàtics i des de Làtex. Visionat en HTML i MathML. El millor resultat s'aconsegueix amb MSWord+MathType i IE+MathPlayer.
Resumo:
Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu
Resumo:
We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.
Resumo:
We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
The matching coefficients for the four-quark operators in NRQCD (NRQED) are calculated at one loop using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic current follows easily from our results. Both the unequal and equal mass cases are considered. The role played by the Coulomb infrared singularities is explained in detail.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.