903 resultados para Martensite morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geo-morphology, ecology and fish production of the 92 rivers of Rajshahi division have been presented in this paper. Fifteen rivers are dead and 11 rivers have severe erosion problem. Siltation has increased in 66 rivers and depth has decreased in 11 rivers. Sixty nine rivers are suffering from low flow conditions. Fish diversity has decreased in 20 rivers while fish production has declined in 75 rivers. A total of 31 fish species have extinct, 25 species are under threat of extinction and 43 species have low production. Siltation and pollution are the major causes of fish habitat loss. Recommendations are made to protect and conserve fish habitat and riverine fisheries of Rajshahi division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eggs of P. monodon are classified into 5 different types on the basis of morphological criteria and hatching rates: A sub(1) eggs, which undergo normal development with 58% hatching rate; A sub(2) eggs, which show delayed and/or abnormal development with 32% hatching rate; B eggs, which are unfertilized and characterized by irregular cytoplasmic formation; C eggs, which are unfertilized and show no change in appearance; and D eggs, which are unfertilized and show extensive bacterial presence. The establishment of a highly linear relationship between percent A sub(1) eggs and hatching rate provides a useful tool to aid the hatchery technician in determining which spawnings to reject outright and which to rear through the larval and post-larval stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled structures capable of mediating electron transfer are an attractive scientific and technological goal. Therefore, systematic variants of SH3-Cytochrome b(562) fusion proteins were designed to make amyloid fibers displaying heme-b(562) electron transfer complexes. TEM and AFM data show that fiber morphology responds systematically to placement of b(562) within the fusion proteins. UV-vis spectroscopy shows that, for the fusion proteins under test, only half the fiber-borne b(562) binds heme with high affinity. Cofactor binding also improves the AFM imaging properties and changes the fiber morphology through changes in cytochrome conformation. Systematic observations and measurements of fiber geometry suggest that longitudinal registry of subfilaments within the fiber, mediated by the interaction and conformation of the displayed proteins and their interaction with surfaces, gives rise to the observed morphologies, including defects and kinks. Of most interest is the role of small molecule modulation of fiber structure and mechanical stability. A minimum complexity model is proposed to capture and explain the fiber morphology in the light of these results. Understanding the complex interplay between these factors will enable a fiber design that supports longitudinal electron transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The masticatory apparatus for two endemic species of golden monkey in China, Rhinopithecus bieti and Rhinopithecus roxellana, were compared with those of macaques, Macaca and leaf monkeys, Presbytis. Multivariate analyses demonstrated that the two golden monkey species are distinct. Interspecies allometric analyses revealed that golden monkeys differ in their masticatory apparatus from both macaques and leaf monkeys. The prominent symphysial fusion, corpus, and sagittal condylar dimension of R. roxellana may produce efficient biting force on the incisal and posterior canine teeth, with the heavy reaction force barn on the temporomandibular joint. However, the well-developed bizygamatic width and mandibular height in R. bieti suggest that posterior canine function is similarly prominent in R. roxellana, while incisal function is not. (C) 1995 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the structural control of individual carbon nanotubes (CNTs), the morphological control of their assemblies is crucial to realize miniaturized CNT devices. Microgradients in the thickness of catalyst are used to enrich the variety of available self-organized morphologies of CNTs. Microtrenches were fabricated in gate/spacer/cathode trilayers using a conventional self-aligned top-down process and catalyst exhibiting a microgradient in its thickness was formed on the cathode by sputter deposition through gate slits. CNTs, including single-walled CNTs, of up to 1μm in length were grown within 5-15 s by chemical vapor deposition. The tendency of thin CNTs to aggregate caused interactions between CNTs with different growth rates, yielding various morphologies dependent on the thickness of the catalyst. The field emission properties of several types of CNT assemblies were evaluated. The ability to produce CNTs with tailored morphologies by engineering the spatial distribution of catalysts will enhance their performance in devices. © 2011 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate vertical and defect-free growth of GaAs nanowires on Si (111) substrates via a vapor-liquid-solid (VLS) growth mechanism with Au catalysts by metal-organic chemical vapor deposition (MOCVD). By using annealed thin GaAs buffer layers on the surface of Si substrates, most nanowires are grown on the substrates straight, following (111) direction; by using two temperature growth, the nanowires were grown free from structural defects, such as twin defects and stacking faults. Systematic experiments about buffer layers indicate that V/III ratio of precursor and growth temperature can affect the morphology and quality of the buffer layers. Especially, heterostructural buffer layers grown with different V/III ratios and temperatures and in-situ post-annealing step are very helpful to grow well arranged, vertical GaAs nanowires on Si substrates. The initial nanowires having some structural defects can be defect-free by two-temperature growth mode with improved optical property, which shows us positive possibility for optoelectronic device application. ©2010 IEEE.