975 resultados para Markov-chain Monte Carlo
Resumo:
MSC Subject Classification: 65C05, 65U05.
Resumo:
2002 Mathematics Subject Classification: 65C05.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
El proyecto de investigación parte de la dinámica del modelo de distribución tercerizada para una compañía de consumo masivo en Colombia, especializada en lácteos, que para este estudio se ha denominado “Lactosa”. Mediante datos de panel con estudio de caso, se construyen dos modelos de demanda por categoría de producto y distribuidor y mediante simulación estocástica, se identifican las variables relevantes que inciden sus estructuras de costos. El problema se modela a partir del estado de resultados por cada uno de los cuatro distribuidores analizados en la región central del país. Se analiza la estructura de costos y el comportamiento de ventas dado un margen (%) de distribución logístico, en función de las variables independientes relevantes, y referidas al negocio, al mercado y al entorno macroeconómico, descritas en el objeto de estudio. Entre otros hallazgos, se destacan brechas notorias en los costos de distribución y costos en la fuerza de ventas, pese a la homogeneidad de segmentos. Identifica generadores de valor y costos de mayor dispersión individual y sugiere uniones estratégicas de algunos grupos de distribuidores. La modelación con datos de panel, identifica las variables relevantes de gestión que inciden sobre el volumen de ventas por categoría y distribuidor, que focaliza los esfuerzos de la dirección. Se recomienda disminuir brechas y promover desde el productor estrategias focalizadas a la estandarización de procesos internos de los distribuidores; promover y replicar los modelos de análisis, sin pretender remplazar conocimiento de expertos. La construcción de escenarios fortalece de manera conjunta y segura la posición competitiva de la compañía y sus distribuidores.
Resumo:
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2 <= f <= 0.8). Consistent with experiments, the disordered phase is found to exhibit direct first-order transitions to each of the ordered morphologies. This includes the spontaneous formation of a perforated-lamellar phase, which presumably forms in place of the gyroid morphology due to finite-size and/or nonequilibrium effects. Also included in our study is a detailed examination of disordered cylinder-forming (f=0.3) diblock copolymers, revealing a substantial degree of pretransitional chain stretching and short-range order that set in well before the ODT, as observed previously in analogous studies on lamellar-forming (f=0.5) molecules. (c) 2006 American Institute of Physics.
Resumo:
In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.
Resumo:
Polyampholyte copolymers containing both positive and negative monomers regularly dispersed along the chain were studied. The Monte Carlo method was used to simulate chains with charged monomers interacting by screened Coulomb potential. The neutral polyampholyte chains collapse due to the attractive electrostatic interactions. The nonneutral chains are in extended conformations due to the repulsive polyelectrolyte effects that dominate the attractive polyampholyte interactions. The results are in good agreement with experiment.
Resumo:
The conformational transition from coil to extended coil for polygalacturonic acid has been studied by conductometric titrations and Monte Carlo simulations. The results of conductometric titrations at different polymer concentrations have been analyzed using the model proposed by Manning,1 which describes the conductivity of polyelectrolitic solutions. This experimental approach provides the transport factor and the average distance between charged groups at different degrees of ionization (α). The mean distances between charged groups have been compared with the values obtained by Monte Carlo simulations. In these simulations the polymer chain is modeled as a self-avoiding random walk in a cubic lattice. The monomers interact through the unscreened Coulombic potential. The ratio between the end-to-end distance and the number of ionized beads provides the average distance between charged monomers. The experimental and theoretical values are in good agreement for the whole range of ionization degrees accessed by conductometric titrations. These results suggest that the electrostatic interactions seem to be the major contribution for the coil to extended coil conformational change. The small deviations for α ≤ 0.5 suggests that the stiffness of the chain, associated with local interactions, becomes increasingly significant as the fraction of charged groups is decreased. © 2000 American Chemical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Diese Arbeit beschäftigt sich mit Strukturbildung im schlechten Lösungsmittel bei ein- und zweikomponentigen Polymerbürsten, bei denen Polymerketten durch Pfropfung am Substrat verankert sind. Solche Systeme zeigen laterale Strukturbildungen, aus denen sich interessante Anwendungen ergeben. Die Bewegung der Polymere erfolgt durch Monte Carlo-Simulationen im Kontinuum, die auf CBMC-Algorithmen sowie lokalen Monomerverschiebungen basieren. Eine neu entwickelte Variante des CBMC-Algorithmus erlaubt die Bewegung innerer Kettenteile, da der bisherige Algorithmus die Monomere in Nähe des Pfropfmonomers nicht gut relaxiert. Zur Untersuchung des Phasenverhaltens werden mehrere Analysemethoden entwickelt und angepasst: Dazu gehören die Minkowski-Maße zur Strukturuntersuchung binären Bürsten und die Pfropfkorrelationen zur Untersuchung des Einflusses von Pfropfmustern. Bei einkomponentigen Bürsten tritt die Strukturbildung nur beim schwach gepfropften System auf, dichte Pfropfungen führen zu geschlossenen Bürsten ohne laterale Struktur. Für den graduellen Übergang zwischen geschlossener und aufgerissener Bürste wird ein Temperaturbereich bestimmt, in dem der Übergang stattfindet. Der Einfluss des Pfropfmusters (Störung der Ausbildung einer langreichweitigen Ordnung) auf die Bürstenkonfiguration wird mit den Pfropfkorrelationen ausgewertet. Bei unregelmäßiger Pfropfung sind die gebildeten Strukturen größer als bei regelmäßiger Pfropfung und auch stabiler gegen höhere Temperaturen. Bei binären Systemen bilden sich Strukturen auch bei dichter Pfropfung aus. Zu den Parametern Temperatur, Pfropfdichte und Pfropfmuster kommt die Zusammensetzung der beiden Komponenten hinzu. So sind weitere Strukturen möglich, bei gleicher Häufigkeit der beiden Komponenten bilden sich streifenförmige, lamellare Muster, bei ungleicher Häufigkeit formt die Minoritätskomponente Cluster, die in der Majoritätskomponente eingebettet sind. Selbst bei gleichmäßig gepfropften Systemen bildet sich keine langreichweitige Ordnung aus. Auch bei binären Bürsten hat das Pfropfmuster großen Einfluss auf die Strukturbildung. Unregelmäßige Pfropfmuster führen schon bei höheren Temperaturen zur Trennung der Komponenten, die gebildeten Strukturen sind aber ungleichmäßiger und etwas größer als bei gleichmäßig gepfropften Systemen. Im Gegensatz zur self consistent field-Theorie berücksichtigen die Simulationen Fluktuationen in der Pfropfung und zeigen daher bessere Übereinstimmungen mit dem Experiment.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
We review the main results from extensive Monte Carlo (MC) simulations on athermal polymer packings in the bulk and under confinement. By employing the simplest possible model of excluded volume, macromolecules are represented as freely-jointed chains of hard spheres of uniform size. Simulations are carried out in a wide concentration range: from very dilute up to very high volume fractions, reaching the maximally random jammed (MRJ) state. We study how factors like chain length, volume fraction and flexibility of bond lengths affect the structure, shape and size of polymers, their packing efficiency and their phase behaviour (disorder–order transition). In addition, we observe how these properties are affected by confinement realized by flat, impenetrable walls in one dimension. Finally, by mapping the parent polymer chains to primitive paths through direct geometrical algorithms, we analyse the characteristics of the entanglement network as a function of packing density.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.