924 resultados para Marked Animals
Resumo:
Lead is highly toxic to animals. Humans eating game killed using lead ammunition generally avoid swallowing shot or bullets and dietary lead exposure from this source has been considered low. Recent evidence illustrates that lead bullets fragment on impact, leaving small lead particles widely distributed in game tissues. Our paper asks whether lead gunshot pellets also fragment upon impact, and whether lead derived from spent gunshot and bullets in the tissues of game animals could pose a threat to human health.
Resumo:
Burkholderia species RASC and Pseudomonas fluorescens were marked with lux genes, encoding for bioluminescence and used to assess the toxicity of mono-, di- and tri-chlorophenols by determining the decline in bioluminescence following exposure to the compounds in aqueous solution. Toxicity was expressed as a 50% effective concentration value (EC50, equating to the concentration of compound which caused a 50% decline in bioluminescence. Comparing the toxicity values of the compounds showed that, in general, increasing the degree of chlorination, increased toxicity. By carrying out forward multiple linear regressions with log10 EC50 values and physio-chemical descriptors, it was shown that molecular parameters describing the hydrogen bonding nature of a chlorophenol provided a better fit than regressions between toxicity data and log10 Kow alone. Utilising these descriptor variables in equations, it was shown that the toxicity of chlorophenols to the lux marked bacteria could be predicted from the compounds physio-chemical characteristics. By correlating lux marked RASC c2 and P. fluorescens EC50 values with toxicity values using Pimephales promelas (fathead minnow), Tetrahymena pyriformis (ciliate) and marine bacterium Vibriofischeri, it was apparent that lux marked RASC c2 correlated well with the freshwater aquatic species (P. promelas and T. pyriformis). This implied that for predictions of toxicity of organic xenobiotic compounds to higher organisms, lux marked RASC c2 could be utilised as a rapid surrogate.
Resumo:
The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.
Resumo:
Literature data on the toxicity of chlorophenols for three luminescent bacteria (Vibrio fischeri, and the lux-marked Pseudomonas fluorescens 10586s pUCD607 and Burkholderia spp. RASC c2 (Tn4431)) have been analyzed in relation to a set of computed molecular physico-chemical properties. The quantitative structure-toxicity relationships of the compounds in each species showed marked differences when based upon semi-empirical molecular-orbital molecular and atom based properties. For mono-, di- and tri-chlorophenols multiple linear regression analysis of V. fischeri toxicity showed a good correlation with the solvent accessible surface area and the charge on the oxygen atom. This correlation successfully predicted the toxicity of the heavily chlorinated phenols, suggesting in V. fischeri only one overall mechanism is present for all chlorophenols. Good correlations were also found for RASC c2 with molecular properties, such as the surface area and the nucleophilic super-delocalizability of the oxygen. In contrast the best QSTR for P. fluorescens contained the 2nd order connectivity index and ELUMO suggesting a different, more reactive mechanism. Cross-species correlations were examined, and between V. fischeri and RASC c2 the inclusion of the minimum value of the nucleophilic susceptibility on the ring carbons produced good results. Poorer correlations were found with P. fluorescens highlighting the relative similarity of V. fischeri and RASC c2, in contrast to that of P. fluorescens.
Resumo:
The question of whether ethanol has intrinsically rewarding properties, or whether, as a discriminative stimulus, it can become a conditioned reinforcer as a function of context association was examined. Paired rats consumed more of an ethanol solution than isolated rats over a 15 day 'conditioning' phase and their ingestion rate was increased significantly over the 15 day period. Furthermore, animals exposed to the solution with a conspecific companion during this conditioning phase subsequently showed a marked preference for ethanol over water throughout a 10 day test phase (when all animals were alone) compared to those with prior experience of the solution in isolation. Both groups consumed significantly more ethanol than the controls (with no prior ethanol experience at all) during this test phase. The results suggest that the total context of initial exposure to ethanol mediate its subsequent reinforcing properties, with the prior pleasurable context of being with a conspecific companion generalizing to the ethanol stimulus for the paired group.
Resumo:
Various game theory models have been used to explain animal contests. Here we attend to the presumed cognitive abilities required by these models with respect to information gathering and consequent decision making. Some, such as the hawk/dove game and self-assessment models require very limited cognitive ability. By contrast, the broadly accepted sequential assessment model requires that contestants know their own abilities and compare them with information gathered about their opponent to determine which has the greater resource-holding power. However, evidence for assessment of relative abilities is sparse and we suggest that this complex ability is probably beyond most animals. Indeed, perceptual limitations may restrict information about an individual's own displays and thus preclude comparison. We take a parsimonious view and conclude that simple summation of causal factors accounts for changes in fight motivation without requiring mutual evaluation of relative abilities. © 2012 The Association for the Study of Animal Behaviour.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.
Resumo:
BACKGROUND: In experimental models of retinopathy of prematurity (ROP), a vasoproliferative disorder of the retina, retinal lesions are usually assessed by morphological examination. However, studies suggest that the polyamine system may be useful in monitoring proliferation processes. For this reason, polyamine concentrations in rat erythrocytes (RBC) and the regulation of polyamine system in rat eyes under the conditions relevant to ROP were investigated. METHODS: Newborn Wistar rats were reared in room air (control) or exposed first to hyperoxia (60% or 80% oxygen, 2 weeks) and then to normoxia (relative hypoxia, 1 or 2 weeks). Blood was collected from orbital vessels at 2 weeks of age and before death. Polyamine system-related enzyme activities were measured in retina and lens with radioassays. Polyamines were quantified by fluorometry after extraction, dansylation and HPLC separation. RESULTS: Oxygen (80% only) significantly decreased RBC polyamine concentrations, which then markedly increased after rats were transferred for a week to normal air, suggesting retardation of growth processes and compensatory stimulation, respectively. However, polyamine system changes in the rat eye were not so pronounced. Enzyme activities and polyamine concentrations tended to be lower in retina after hyperoxia and were only slightly higher, with the exception of ornithine decarboxylase, after a subsequent 1 week of normoxia. In litters subjected to normoxia for longer periods no changes were found. CONCLUSION: The transient and short-lived alteration in polyamine metabolism, especially in the eye, suggests that exposure of newborn rats to high oxygen supplementation followed by normoxia does not necessarily result in marked retinopathy.
Resumo:
Background: Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).
Methodology/Principal Findings: Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.
Conclusions/Significance: In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection.
Resumo:
Animals frequently engage in mutual displays that may allow or at least help decisions about the outcome of agonistic encounters with mutual benefit to the opponents. In fish these often involve lateral displays, with previous studies finding evidence of population-level lateralization with a marked preference for showing the right side and using the right eye. Because both opponents tend to show this preference a head to tail configuration is formed and is used extensively during the display phase. Here we tested the significance of these lateral displays by comparing displays to a mirror with those to a real opponent behind a transparent barrier. The frequency of displays was lower to a mirror but the individual displays were of greater duration indicating a slower pace of the interaction with a mirror. This suggests that fish respond to initiatives of real opponents but as mirror images do not initiate moves the focal fish only moves when it is ready to change position. However, lateralization was still found with mirrors, indicating that the right-side bias is a feature of the individual and not of the interaction between opponents. We discuss implications for ideas about the evolution of mutual cooperation and information exchange in contests, as well as the utility of the use of mirrors in the study of aggression in fish.
Resumo:
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.