962 resultados para Mammalian cell expression system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Le cancer du sein est le cancer le plus commun chez les femmes et est responsable de presque 30% de tous les nouveaux cas de cancer en Europe. On estime le nombre de décès liés au cancer du sein en Europe est à plus de 130.000 par an. Ces chiffres expliquent l'impact social considérable de cette maladie. Les objectifs de cette thèse étaient: (1) d'identifier les prédispositions et les mécanismes biologiques responsables de l'établissement des sous-types spécifiques de cancer du sein; (2) les valider dans un modèle ín vivo "humain-dans-souris"; et (3) de développer des traitements spécifiques à chaque sous-type de cancer du sein identifiés. Le premier objectif a été atteint par l'intermédiaire de l'analyse des données d'expression de gènes des tumeurs, produite dans notre laboratoire. Les données obtenues par puces à ADN ont été produites à partir de 49 biopsies des tumeurs du sein provenant des patientes participant dans l'essai clinique EORTC 10994/BIG00-01. Les données étaient très riches en information et m'ont permis de valider des données précédentes des autres études d'expression des gènes dans des tumeurs du sein. De plus, cette analyse m'a permis d'identifier un nouveau sous-type biologique de cancer du sein. Dans la première partie de la thèse, je décris I identification des tumeurs apocrines du sein par l'analyse des puces à ADN et les implications potentielles de cette découverte pour les applications cliniques. Le deuxième objectif a été atteint par l'établissement d'un modèle de cancer du sein humain, basé sur des cellules épithéliales mammaires humaines primaires (HMECs) dérivées de réductions mammaires. J'ai choisi d'adapter un système de culture des cellules en suspension basé sur des mammosphères précédemment décrit et pat décidé d'exprimer des gènes en utilisant des lentivirus. Dans la deuxième partie de ma thèse je décris l'établissement d'un système de culture cellulaire qui permet la transformation quantitative des HMECs. Par la suite, j'ai établi un modèle de xénogreffe dans les souris immunodéficientes NOD/SCID, qui permet de modéliser la maladie humaine chez la souris. Dans la troisième partie de ma thèse je décris et je discute les résultats que j'ai obtenus en établissant un modèle estrogène-dépendant de cancer du sein par transformation quantitative des HMECs avec des gènes définis, identifiés par analyse de données d'expression des gènes dans le cancer du sein. Les cellules transformées dans notre modèle étaient estrogène-dépendantes pour la croissance, diploïdes et génétiquement normales même après la culture cellulaire in vitro prolongée. Les cellules formaient des tumeurs dans notre modèle de xénogreffe et constituaient des métastases péritonéales disséminées et du foie. Afin d'atteindre le troisième objectif de ma thèse, j'ai défini et examiné des stratégies de traitement qui permettent réduire les tumeurs et les métastases. J'ai produit un modèle de cancer du sein génétiquement défini et positif pour le récepteur de l'estrogène qui permet de modéliser le cancer du sein estrogène-dépendant humain chez la souris. Ce modèle permet l'étude des mécanismes impliqués dans la formation des tumeurs et des métastases. Abstract Breast cancer is the most common cancer in women and accounts for nearly 30% of all new cancer cases in Europe. The number of deaths from breast cancer in Europe is estimated to be over 130,000 each year, implying the social impact of the disease. The goals of this thesis were first, to identify biological features and mechanisms --responsible for the establishment of specific breast cancer subtypes, second to validate them in a human-in-mouse in vivo model and third to develop specific treatments for identified breast cancer subtypes. The first objective was achieved via the analysis of tumour gene expression data produced in our lab. The microarray data were generated from 49 breast tumour biopsies that were collected from patients enrolled in the clinical trial EORTC 10994/BIG00-01. The data set was very rich in information and allowed me to validate data of previous breast cancer gene expression studies and to identify biological features of a novel breast cancer subtype. In the first part of the thesis I focus on the identification of molecular apacrine breast tumours by microarray analysis and the potential imptìcation of this finding for the clinics. The second objective was attained by the production of a human breast cancer model system based on primary human mammary epithelial cells {HMECs) derived from reduction mammoplasties. I have chosen to adopt a previously described suspension culture system based on mammospheres and expressed selected target genes using lentiviral expression constructs. In the second part of my thesis I mainly focus on the establishment of a cell culture system allowing for quantitative transformation of HMECs. I then established a xenograft model in immunodeficient NOD/SCID mice, allowing to model human disease in a mouse. In the third part of my thesis I describe and discuss the results that I obtained while establishing an oestrogen-dependent model of breast cancer by quantitative transformation of HMECs with defined genes identified after breast cancer gene expression data analysis. The transformed cells in our model are oestrogen-dependent for growth; remain diploid and genetically normal even after prolonged cell culture in vitro. The cells farm tumours and form disseminated peritoneal and liver metastases in our xenograft model. Along the lines of the third objective of my thesis I defined and tested treatment schemes allowing reducing tumours and metastases. I have generated a genetically defined model of oestrogen receptor alpha positive human breast cancer that allows to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We have previously demonstrated that mutations in the FAM161A gene, encoding a protein with unknown function and no similarities with other characterized sequences, cause autosomal recessive retinitis pigmentosa (RP). The purpose of this work is to investigate the functional role of FAM161A within the retina and its relationship with other proteins involved in RP. Methods: The subcellular localization of FAM161A in the retina was assessed by immunohistochemistry of retinal sections and dissociated photoreceptors from mice, which were stained using antibodies against FAM161A and antibodies against cilium markers. The function of FAM161A was further assessed in ciliated mammalian cell lines by expression of recombinant FAM161A with various fusion tags. The binary interaction between FAM161A and a collection of ciliary and ciliopathy-associated proteins was analyzed using a yeast two-hybrid assay. The results obtained with this technique were validated using independent protein-protein interaction assays (GST-pull downs, co-transfection and co-immunoprecipitation). Results: Native FAM161A localized at the connecting cilium of photoreceptor cells, as demonstrated by immunofluorescence in both dissociated photoreceptors and retinal sections of mice. More specifically, co-staining with markers for ciliary sub-structures (RPGRIP1L, Centrin, RP1, GT335) demonstrated that FAM161A decorated the basal body and the very apical part of the connecting cilium. Upon overexpression in ciliated cultured mammalian cells, FAM161A localized to the ciliary basal body. Yeast two-hybrid analysis of the binary interaction of FAM161A and an array of ciliary proteins revealed the direct interaction of FAM161A with three proteins of which the cognate genes are mutated in retinal ciliopathies. The confirmation of these interactions using different biochemical assays is currently in progress. Conclusions: FAM161A is a ciliary basal body protein of the photoreceptor connecting cilium, rendering the associated RP as a novel retinal ciliopathy. The confined expression of FAM161A in the retina and the direct interaction of FAM161A with other retinal ciliopathy-associated proteins may explain the retinal phenotype of this specific subset of mechanistically and phenotypically connected retinal disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa has developed a complex cell-to-cell communication system that relies on low-molecular weight excreted molecules to control the production of its virulence factors. We previously characterized the transcriptional regulator MvfR, that controls a major network of acute virulence functions in P. aeruginosa through the control of its ligands, the 4-hydroxy-2-alkylquinolines (HAQs)-4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS). Though HHQ and PQS are produced in infected animals, their ratios differ from those in bacterial cultures. Because these molecules are critical for the potency of activation of acute virulence functions, here we investigated whether they are also produced during human P. aeruginosa acute wound infection and whether their ratio is similar to that observed in P. aeruginosa-infected mice. We found that a clinically relevant P. aeruginosa isolate produced detectable levels of HAQs with ratios of HHQ and PQS that were similar to those produced in burned and infected animals, and not resembling ratios in bacterial cultures. These molecules could be isolated from wound tissue as well as from drainage liquid. These results demonstrate for the first time that HAQs can be isolated and quantified from acute human wound infection sites and validate the relevance of previous studies conducted in mammalian models of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis E virus (HEV) infection is gaining global attention, not only because of the increasing burden of the disease in low endemicity countries, in terms of morbidity and mortality rates, but also due to recent advances in the molecular virology and epidemiology of this emerging pathogen. HEV infection spread can be described as the evolution of a zoonosis towards an established human infection. As known from other viruses, such as the human immunodeficiency virus or the influenza viruses, crossing the species barriers from animals to humans is a recurrent phenomenon. Albeit slow at the beginning, once the virus has adapted to humans, the person-to-person spread can proceed very quickly. Although an optimal cell culture system for HEV is not yet available, outstanding progress has been made with the in vitro expression of HEV-like particles. These new tools have fostered new research to understand the molecular, structural and immunological aspects of human HEV infection. Although some promising data from Phase II vaccine trials are available, recent discoveries will certainly open new avenues for HEV-specific prophylaxis and therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation.DOI: http://dx.doi.org/10.7554/eLife.02510.001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explore potential alternatives to the production of polyhydroxyalkanoates (PHAs) in bacteria, the enzymes of Alcaligenes eutrophus involved in the synthesis of polyhydroxybutyrate (PHB) have been expressed in the model plant Arabidopsis thaliana. Following the successful production of low amounts of high molecular weight PHB in plants expressing the acetoacetyl-CoA reductase and the PHB synthase in the cytoplasm of Arabidopsis cell, expression of the PHB pathway in the pastids was achieved by modifying the PHB enzymes with plastid targeting signals. This strategy resulted in a significant increase in the formation of PHB in Arabidopsis, with a maximum of 14% of the leaf dry weight . The increase in PHB production is most likely due to the higher flux in the plastids of acetyl-CoA, the precursor for PHB synthesis. A detailed study of metabolic fluxes in Arabidopsis plants producing high levels of PHB could help to determine the potential problems and limitations of PHB synthesis in Arabidopsis and could be useful for optimising strategies for the production of PHB in crop plants. The knowledge on PHB production could also be used for the production of PHAs other than PHB. Apart from PHB, no other PHAs have been produced in an eukaryotic system. Arabidopsis will therefore be used as a model system for the production in eukaryotes of more complex PHAs, such as poly(hydroxybutyrate-co-hydroxyvylerate) or medium-chain-lenght-PHAs.