996 resultados para Maintenance Decision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk Based Inspection (RBI) is a risk methodology used as the basis for prioritizing and managing the efforts for an inspection program allowing the allocation of resources to provide a higher level of coverage on physical assets with higher risk. The main goal of RBI is to increase equipment availability while improving or maintaining the accepted level of risk. This paper presents the concept of risk, risk analysis and RBI methodology and shows an approach to determine the optimal inspection frequency for physical assets based on the potential risk and mainly on the quantification of the probability of failure. It makes use of some assumptions in a structured decision making process. The proposed methodology allows an optimization of inspection intervals deciding when the first inspection must be performed as well as the subsequent intervals of inspection. A demonstrative example is also presented to illustrate the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety is one of the major concerns of process safety engineers in most industrial facilities all over the world. To this scope, some events play an important role once the effect of their consequences can be assumed as totally undesirable. One of these events refers to the occurrence of a fire. Such event can result in catastrophic consequences for life, equipment, and continuity of activities or even leading to environmental damage. A fire protection equipment with low reliability means that this equipment are often unavailable and thus the risk of a fire increases. Maintenance of fire protection equipment is very important because this kind of systems is mostly in a dormant mode, which gives uncertainty about their operability when demanded in a real situation of fire. This article outlines the importance of tests, inspection, and maintenance operations in the context of a fire sprinkler system and proposes a methodology based on international standards and supported by test/inspection reports to correct the frequency of these actions according to the level of degradation of the components and regarding safety purposes. © 2015 American Institute of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-criteria decision analysis(MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work is to report on the development of a multi-criteria methodology to support the assessment and selection of an Information System (IS) framework in a business context. The objective is to select a technological partner that provides the engine to be the basis for the development of a customized application for shrinkage reduction on the supply chains management. Furthermore, the proposed methodology di ers from most of the ones previously proposed in the sense that 1) it provides the decision makers with a set of pre-defined criteria along with their description and suggestions on how to measure them and 2)it uses a continuous scale with two reference levels and thus no normalization of the valuations is required. The methodology here proposed is has been designed to be easy to understand and use, without a specific support of a decision making analyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last fifty years mobility practices have changed dramatically, improving the way travel takes place, the time it takes but also on matters like road safety and prevention. High mortality caused by high accident levels has reached untenable levels. But the research into road mortality stayed limited to comparative statistical exercises which go no further than defining accident types. In terms of sharing information and mapping accidents, little progress has been mad, aside from the normal publication of figures, either through simplistic tables or web pages. With considerable technological advances on geographical information technologies, research and development stayed rather static with only a few good examples on dynamic mapping. The use of Global Positioning System (GPS) devices as normal equipments on automobile industry resulted in a more dynamic mobility patterns but also with higher degrees of uncertainty on road traffic. This paper describes a road accident georeferencing project for the Lisbon District involving fatalities and serious injuries during 2007. In the initial phase, individual information summaries were compiled giving information on accidents and its majour characteristics, collected by the security forces: the Public Safety Police Force (Polícia de Segurança Pública - PSP) and the National Guard (Guarda Nacional Republicana - GNR). The Google Earth platform was used to georeference the information in order to inform the public and the authorities of the accident locations, the nature of the location, and the causes and consequences of the accidents. This paper also gives future insights about augmented reality technologies, considered crucial to advances to road safety and prevention studies. At the end, this exercise could be considered a success because of numerous consequences, as for stakeholders who decide what to do but also for the public awareness to the problem of road mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Sistemas de Informação Industriais, Engenharia Electrotécnica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anopheles albimanus is one of the main vectors of malaria in Central America and the Caribbean, based on its importance, there are previous reports of the successful colonization of this species in Latin America countries. Mosquitoes were collected in the Aragua State of Venezuela colonized in the laboratory, using a simple and efficient maintenance method. Based on life table calculations under well established laboratory conditions, the Survival Rate Probability was constant and always close to 1 in immature stages, the Reproductive Net Rate (Ro) was 3.83, the generation time (Tc) was 24.5 days and the Intrinsic Growth Rate (rm) was 0.0558. This is the first report of the colonization of A. albimanus in Venezuela.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World Transport Policy & Practice, Vol.6, nº2, (2000)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the report for Project III of the PhD programme on Technology Assessment and prepared for the Winter School that took place at Universidade Nova de Lisboa, Caparica Campus on the 6th and 7th of December 2010.