975 resultados para Maine Guides
Resumo:
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.
Resumo:
Digitalisat der Ausg. Wilne, 1923
Resumo:
Jeḥezkel Kotik
Resumo:
Summer nighttime abundance and localized distribution of fishes in a tidal cove were studied by beach seining for comparison with a previous daytime study. American eels were relatively abundant at night and absent during the day. Alewife, blueback herring, and Atlantic silver-side were more abundant in the cove at night. Although mummichog numbers were greatly reduced at night, they remained an important constituent of the night fauna. Lesser components of the night fauna included Atlantic herring, Atlantic tomcod, smooth flounder, winter flounder, and rainbow smelt.
Resumo:
The biomass, abundance and species composition of phytoplankton in the Kennebec estuary, Maine, USA, were investigated in relation to hydrography and Light regime during 7 seasonal survey cruises. The salinity distribution ranged from 32 at the mouth to between 0 and 5 at the head, depending on the magnitude of freshwater discharge at the time of each survey. Maximum Vertical salinity and temperature gradients were observed at the mouth. while local tidal mixing, combined with the freshwater flow, produced a well-mixed water column at the head of the estuary. The middle portion of the estuary was stratified on flooding and ebbing tides, but was vertically well mixed at high and low tides. Phytoplankton biomass was lowest in winter (chlorophyll a approximate to 1 mu g l(-1)) and highest in summer (up to 10 mu g l(-1)) The phytoplankton species assemblages at the seaward and the riverine ends of the estuary were made up of taxa with corresponding salinity preferences. Both cell numbers and biomass (chlorophyll a) exhibited a bimodal distribution along the length of the estuary in the warmer months, with the middle portions of the estuary having depressed phytoplankton standing stocks compared with the seaward and landward ends. This bimodal distribution was related to Light limitation and nutrient regeneration in the middle portion of the estuary and to the production of and advective contributions of phytoplankton from both the freshwater and seaward ends.
Resumo:
Dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), in both particulate and dissolved forms, were surveyed during the early spring (March and April) and summer (July) of 1991 in coastal and offshore waters of the Gulf of Maine, USA, along with the hydrography, inorganic nutrients, phytoplankton chlorophyll, and phytoplankton taxonomic composition and abundance. Concentrations as high as 15 nM DMS (in April and July), 208 nM particulate DMSP (in April), and 101 nM dissolved DMSP (in July) were recorded. Total DMSP (dissolved plus particulate) reached 293 nM in a patch of the dinoflagellate Katodinium sp. in April. This is the first report of high DMSP concentrations in temperate waters in early spring associated with any organism other than the prymnesiophyte Phaeocystis pouchetii. There were no correlations between phytoplankton biomass, as measured by chlorophyll a, and DMS, and there were only slight correlations between chlorophyll a and DMSP in either dissolved or particulate form. As previously demonstrated by others, concentrations of intracellular (particulate) DMSP were related more to the presence of specific phytoplankton species rather than to overall phytoplankton biomass. The occurrence of high DMSP and DMS levels in early spring, comparable with or higher than those seen in summer maxima, at a time when bacterial activity is minimal and wind speeds are typically high may result in enhanced air-sea-fluxes of DMS.
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.
Resumo:
Beginning in the late 1980s, lobster (Homarus americanus) landings for the state of Maine and the Bay of Fundy increased to levels more than three times their previous 20-year means. Reduced predation may have permitted the expansion of lobsters into previously inhospitable territory, but we argue that in this region the spatial patterns of recruitment and the abundance of lobsters are substantially driven by events governing the earliest life history stages, including the abundance and distribution of planktonic stages and their initial settlement as Young-of-Year (YOY) lobsters. Settlement densities appear to be strongly driven by abundance of the pelagic postlarvae. Postlarvae and YOY show large-scale spatial patterns commensurate with coastal circulation, but also multi-year trends in abundance and abrupt shifts in abundance and spatial patterns that signal strong environmental forcing. The extent of the coastal shelf that defines the initial settlement grounds for lobsters is important to future population modeling. We address one part of this definition by examining patterns of settlement with depth, and discuss a modeling framework for the full life history of lobsters in the Gulf of Maine.
Resumo:
The daytime abundance and localized distribution of fishes in relation to temperature were studied in a small tidal cove by beach seining on seven dates in the Back River estuary, Maine, during the summers of 1971 and 1972. Temperatures on the seven dates ranged from 15.1–26.2 C, and salinities ranged from 17.3–24.7‰. Eighteen species of fishes were captured, with mummichogs, smooth flounders, Atlantic silversides and Atlantic herring together comprising over 98% of the catch. Mummichogs and Atlantic silversides were captured primarily near the inner end of the cove, while other abundant species were caught mainly at the outer end of the cove. Several species seem well adapted to naturally warm cove temperatures. Others seem now virtually excluded because of warm temperatures. Winter flounder, Atlantic herring, and Atlantic tomcod might be excluded from the cove during daytime in summer if artificial warming of the cove were permitted.
Resumo:
Fifteen species of pelagic fishes were collected in 156 gill net sets at eight locations in the Sheepscot River-Back River estuary, Wiscasset, Maine, June 1970 through December 1971. Highest catches occurred June through August. Only the rainbow smelt is a year-round resident. Differences in abundance in space and time are apparently related to temperature. During the summer, alewives, blueback herring, and Atlantic menhaden were most abundant in the relatively warm Back River estuary, while Atlantic herring, Atlantic mackerel, and spiny dogfish were most abundant in the more oceanic Sheepscot River estuary. Prolonged near-freezing temperatures apparently limit the time pelagic fishes spend in the estuary and limit the number of species which can inhabit it. It is hypothesized that the distribution of pelagic species which exhibited preferences for colder water, such as Atlantic herring, would be most affected by artificial warming of the surface waters of the Back River estuary, if a new atomic powered generating plant were allowed to discharge heated effluent directly into it.
Resumo:
This thesis tests if certain technology choices are associated with a reduction in the proportion of farming activities in the agro-food system in Maine. Goodman, Sorj, and Wilkinson define appropriationism as the replacement of farming sector activities by industrial inputs. Based on the concept of appropriationism, industrial fanning systems using large amounts of synthetic inputs contribute less to fanning than more agrarian systems, like organic fanning. Thus, returns to the farming sector should be greater for organic compared with conventional potato fanning in Maine since organic farming uses fewer industrial inputs. Goodman et. al. define substitutionism as the displacement of farming sector commodities and activities by industrial processes in the marketing sector. Based on the concept of substitutionism, returns to the farming sector should be greater for Lay's Classic®™ potato chips made from natural potatoes compared with Baked Lay's®™ potato crisps manufactured from processed dehydrated potatoes. Returns to the farming sector are defined as returns to the farmer or farm family from farming activities, returns to farm labor, and returns to farmers and farm labor producing inputs used on the farm. Results show absolute returns to the farming sector are less for organic compared to conventional tablestock potato farms in Maine. However as a proportion of farm revenues, large organic farms that market at least 25% of their produce to retail stores or directly to consumers do as well as conventional farms. When comparing returns as a proportion of consumer expenditures, these organic farms do better than conventional farms. Returns to the farming sector are less for organic because of yield penalties, cost of marketing services, and diseconomies of size for organic tablestock potato farms. Expanding acreage and reintegrating livestock with cropping systems may increase returns to the fanning sector. Organic farming demonstrates difficulties in providing marketing services at the farm level. Providing marketing services limits the ability to expand production to capture economies of size. Maine organic potato farmers emphasize non-monetary values such as supporting sustainable agriculture, self-sufficiency, the intrinsic value of work, and close community and family connections. Returns to the farming sector as a proportion of consumer expenditures are about three times greater for Lay's Classic®™ potato chips than for Baked Lay's®™ potato crisps, since the value that farmers receive for potatoes used to produce dehydrated potato flakes in one pound of crisps is about half of the value that farmers receive for potatoes used to make one pound of chips. However, this assumes farmers assign a cost to producing low-grade potatoes for dehydration proportionate to their value. Premium potatoes are used to produce potato chips. Low-grade potatoes are used to produce the dehydrated potato flakes used to make potato crisps. Returns to the farming sector are slightly greater for potato crisps if no costs are allocated to producing low-grade potatoes for dehydration. A shift in consumer preferences from potato chips to crisps may result in a geographical shift of potato production from Maine to the Pacific Northwest assuming no food-grade dehydration facilities are built in Maine.
Resumo:
In order to maintain pond-breeding amphibian species richness, it is important to understand how both natural and anthropogenic disturbances affect species assemblages and individual species distributions both at the scale of individual ponds and at a larger landscape scale. The goal of this project was to investigate what characteristics of ponds and the surrounding wetland landscape were most effective in predicting pond-breeding species richness and the individual occurrence of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana) and pickerel frog (Rana palustris) breeding sites in a beaver-modified landscape and how this landscape has changed over time. The wetland landscape of Acadia National Park was historically modified by the natural disturbance cycles of beaver (Castor cazadensis), and since their reintroduction to the island in 1921, beaver have played a large role in creating and maintaining palustrine wetlands. In 2000 and 2001, I studied pond-breeding amphibian assemblages at 71 palustrine wetlands in Acadia National Park, Mount Desert Island, Maine. I determined breeding presence of 7 amphibian species and quantified 15 variables describing local pond conditions and characteristics of the wetland landscape. I developed a priori models to predict sites with high amphibian species and used model selection with Akaike's Information Criterion (AIC) to identify important variables. Single species models were also developed to predict wood frog, bullfrog and pickerel frogs breeding presence. The variables for wetland connectivity by stream corridors and the presence of beaver disturbance were the most effective variables to predict sites with high amphibian richness. Wood frog breeding was best predicted by local scale variables describing temporary, fishless wetlands and the absence of active beaver disturbance. Abandoned beaver sites provided wood frog breeding habitat (70%) in a similar proportion to that found in non beaver-influenced sites (79%). In contrast, bullfrog breeding presence was limited to active beaver wetlands with fish and permanent water, and 80% of breeding sites were large (≥2ha in size). Pickerel frog breeding site selection was predicted best by the connectivity of sites in the landscape by stream corridors. Models including the presence of beaver disturbance, greater wetland perimeter and greater depth were included in the confidence set of pickerel frog models but showed considerably less support. Analysis of historic aerial photographs showed an 89% increase in the total number of ponded wetlands available in the landscape between the years of 1944 and 1997. Beaver colonization generally converted forested wetlands and riparian areas to open water and emergent wetlands. Temporal colonization of beaver wetlands favored large sites low in the watersheds and sites that were impounded later were generally smaller, higher in the watershed, and more likely to be abandoned. These results suggest that beaver have not only increased the number of available breeding sites in the landscape for pond-breeding amphibians, but the resulting mosaic of active and abandoned beaver wetlands also provides suitable breeding habitat for species with differing habitat requirements.
Resumo:
The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.
Resumo:
Beth Owen is just one of many Yale School of Forestry and Environmental Studies graduate students and alumni to participate in an independent research project through the support of Connecticut Sea Grant. The internships have been as ambitious as they are diverse, and all have given participants a new perspective on the role of research in their future. The program is based at Yale’s Center for Coastal and Watershed Systems. Beth sampled and analyzed sediments for heavy metals from the lower Quinnipiac River.