271 resultados para Magnetohydrodynamics (MHD)
Resumo:
The Velikhov effect leading to magnetorotational instability (MRI) is incorporated into the theory of ideal internal kink modes in a differentially rotating cylindrical plasma column. It is shown that this effect can play a stabilizing role for suitably organized plasma rotation profiles, leading to suppression of MHD (magnetohydrodynamic) instabilities in magnetic confinement systems. The role of this effect in the problem of the Suydam and the m = 1 internal kink modes is elucidated, where m is the poloidal mode number.
Resumo:
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Resumo:
The NADPH-diaphorase (NADPH-d) positive myoenteric neurons from the body of the stomach of rats with streptozotocin-induced diabetes with or without supplementation with acetyl-L-carnitine (ALC) were evaluated. At the age of 105 days the animals were divided into four groups: normoglycaemic (C), normoglycaemic supplemented with ALC (CC), diabetic (D) and diabetic supplemented with ALC (DC). The supplementation with ALC (200 mg/kg body weight/day) to groups CC and DC was made during 105 days. After this period the animals were killed and the stomach removed and subjected to the histochemical technique of NADPH-d for the staining of the neurons of the myoenteric plexus. The area of 500 neurons of each group was investigated, as well as the neuronal density in an area of 23.84 mm(2) in each stomach. ALC promoted reduction (P < 0.05) of fasting glycaemia, water ingestion and areas of the profiles of the cell bodies of the NADPH-d neurons in the diabetic animals. The density of these neurons was not statistically different in the groups studied. It is suggested, therefore, a moderate neuroprotective effect of ALC, because the diminishment of the areas of the neuronal profiles in the supplemented diabetic animals, although being statistically significant relative to the non-supplemented diabetics, was not sufficient to equal the values from the non-diabetic controls.
Resumo:
In this work, we investigated the effect of the acetyl-L-carnitine (ALC) supplementation (200 mg/kg/day) on the myenteric neurons of the ileum of rats made diabetic by streptozotocin (35 mg/kg, i.v.). Four groups were used: diabetic (D), diabetic supplemented with ALC (DC), control (C) and control supplemented with ALC (CC). After 15 weeks of diabetes induction the animals were killed and the ileum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The density of neurons seen in 12.72 min(2) of ileum showed no difference among the groups, although in group D it was 22% smaller than in group C, while group DC was 9% smaller to group CC. The profiles of the cell bodies (PC) of 1000 neurons per group were analysed. The neurons PC in group D decreased (P < 0.0001) when compared with other groups and increased (P < 0.0001) when compared with group DC. The incidence of neurons with a PC inferior to 200 mu m(2) was larger in group D. The frequency of neurons with a PC higher than 200 mu m(2) in group DC was close to those seen in groups C and CC. We concluded that ALC eases the loss of neurons and makes the incidence of myenteric neurons with a PC higher than 200 mu m(2) similar to the control rats.
Social support and infant malnutrition: a case-control study in an urban area of Southeastern Brazil
Resumo:
The relationship between malnutrition and social support was first suggested in the mid-1990s. Despite its plausibility, no empirical studies aimed at obtaining evidence of this association could be located. The goal of the present study was to investigate such evidence. A case-control study was carried out including 101 malnourished children (weight-for-age National Center for Health Statistics/WHO 5th percentile) aged 12-23 months, who were compared with 200 well-nourished children with regard to exposure to a series of factors related to their social support system. Univariate and multiple logistic regressions were carried out, odds ratios being adjusted for per capita family income, mother's schooling, and number of children. The presence of an interaction between income and social support variables was also tested. Absence of a partner living with the mother increased risk of malnutrition (odds ratio 2.4 (95 % CI 1.19, 4.89)), even after adjustment for per capita family income, mother's schooling, and number of children. The lack of economic support during adverse situations accounted for a very high risk of malnutrition (odds ratio 10.1 (95 % CI 3.48, 29.13)) among low-income children, but had no effect on children of higher-income families. Results indicate that receiving economic support is an efficient risk modulator for malnutrition among low-income children. In addition, it was shown that the absence of a partner living with the mother is an important risk factor for malnutrition, with an effect independent from per capita family income, mother's schooling, and number of children.
Resumo:
In this paper, the meshless method is introduced to magnetohydrodynamics. A numerical scheme based on the element-free Galerkin method is used to solve the laminar steady-state two-dimensional fully developed magnetohydrodynamic flow in a rectangular duct. Accurate and convergent solutions are achieved for low to moderately high Hartmann numbers.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011) we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009) we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009) show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.
Resumo:
The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]
Resumo:
Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.
Resumo:
Long-distance correlations (LDCs) of plasma potential fluctuations in the plasma edge have been investigated in the TCABR tokamak in the regime of edge biasing H-mode using an array of multi-pin Langmuir probes. This activity was carried out as part of the scientific programme of the 4th IAEA Joint Experiment (2009). The experimental data confirm the effect of amplification of LDCs in potential fluctuations during biasing recently observed in stellarators and tokamaks. For long toroidal distances between probes, the cross-spectrum is concentrated at low frequencies f < 60 kHz with peaks at f < 5 kHz, f = 13-15 kHz and f similar to 40 kHz and low wave numbers with a maximum at k = 0. The effects of MHD activity on the LDCs in potential fluctuation are investigated.
Resumo:
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.
Resumo:
In this Letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in [3] and demonstrated numerically in [8]. When turbulence is included within the current sheet, the acceleration rate is highly enhanced, because reconnection becomes fast and independent of resistivity [4,11] and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.
Resumo:
Actually, transition from positive to negative plasma current and quasi-steady-state alternated current (AC) operation have been achieved experimentally without loss of ionization. The large transition times suggest the use of MHD equilibrium to model the intermediate magnetic field configurations for corresponding current density reversals. In the present work we show, by means of Maxwell equations, that the most robust equilibrium for any axisymmetric configuration with reversed current density requires the existence of several nonested families of magnetic surfaces inside the plasma. We also show that the currents inside the nonested families satisfy additive rules restricting the geometry and sizes of the axisymmetric magnetic islands; this is done without restricting the equilibrium through arbitrary functions. Finally, we introduce a local successive approximations method to describe the equilibrium about an arbitrary reversed current density minimum and, consequently, the transition between different nonested topologies is understood in terms of the eccentricity of the toroidal current density level sets.