819 resultados para MacKenzie, Donald
Resumo:
Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130 +/- 102 and 1200 +/- 97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35 % of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.
Resumo:
Fungi, including the entomopathogenic deuteromycete Metarhizium anisopliae, produce a wide diversity of secondary metabolites that either can be secreted or stored in specific developmental structures, e.g., conidia. Some secondary metabolites, such as pigments, polyols and mycosporines, are associated with pathogenicity and/or fungal tolerance to several stress-inducing environmental factors, including temperature and solar radiation extremes. Extracts of M. anisopliae var. anisopliae (strain ESALQ-1037) conidia were purified by chromatographic procedures and the isolated compounds analyzed by (1)H and (13)C nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. LC-MS analyses were carried out to search for mycosporines (the initial targets), but no compounds of this class were detected. A molecule whose natural occurrence was previously undescribed was identified. It consists of betaine conjugated with tyrosine, and the structure was identified as 2-([1-carboxy-2-(4-hydroxyphenyl)ethyl]amino)-N,N,N-trimethyl-2-oxoethanammonium. mannitol was the predominant compound in the alcoholic conidial extract, but no amino acids other than tyrosine were found to be conjugated with betaine in conidia. The fungal tyrosine betaine was detected also in conidial extracts of three other M. anisopliae var. anisopliae (ARSEF 1095, 5626 and 5749) and three M. anisopliae var. acridum isolates (ARSEF 324, 3391 and 7486), but it was not detected in Aspergillus nidulans conidial extract (ATCC 10074). (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Index to correspondence and manuscript material on literary and historical matters, mostly in Queensland and New South Wales, Australia held in the Fryer Library, University of Queensland - UQFL2. Authors and subjects include J.H.M. Abbott, Archer Family, E. Armitage, R. Bedford, H.S. Bloxome, E.J. Brady, 'Broadside', F. Broomfield, A.H. Chisholm, C.B. Christesen, R.H. Croll, Z. Cross, F.W.S. Cumbrae-Stewart, E. Dark, D. Deamer, C.J. Dennis, J. Devaney, E.M. England, P. Fitzgerald, R.D. Fitzgerald, Dame Mary Gilmore, C. Gittins, A.L. Gordon (criticism), P. Grano, M. Haley, W.A. Horn, R.G. Howarth, J. Howlett Ross, E.H. Lane, H. Lane, F.J. McAuley, D. McConnel, G. McCrae, K. (S) Mackenzie, P. Miles, J.K. Moir, C.P. Mountford, A. Muir, D.A. O'Brien, J.H. O'Dwyer, W.H. Ogilvie, M. Potter, T. Playford, H. Power, Queensland Authors' and Artists' Association, I. Southall, W. Sowden, A.G. Stephens, P.R. Stephensen, H. Tyron, A.J. Vogan, B. Vrepont, T. Welsby, H.R. White and Duke of Windsor. Also personal papers of Father Hayes, relating to his activities as parish priest.
Resumo:
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.
Resumo:
No Abstract
Resumo:
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
Background: The accuracy of multidetector computed tomographic (CT) angiography involving 64 detectors has not been well established. Methods: We conducted a multicenter study to examine the accuracy of 64-row, 0.5-mm multidetector CT angiography as compared with conventional coronary angiography in patients with suspected coronary artery disease. Nine centers enrolled patients who underwent calcium scoring and multidetector CT angiography before conventional coronary angiography. In 291 patients with calcium scores of 600 or less, segments 1.5 mm or more in diameter were analyzed by means of CT and conventional angiography at independent core laboratories. Stenoses of 50% or more were considered obstructive. The area under the receiver-operating-characteristic curve (AUC) was used to evaluate diagnostic accuracy relative to that of conventional angiography and subsequent revascularization status, whereas disease severity was assessed with the use of the modified Duke Coronary Artery Disease Index. Results: A total of 56% of patients had obstructive coronary artery disease. The patient-based diagnostic accuracy of quantitative CT angiography for detecting or ruling out stenoses of 50% or more according to conventional angiography revealed an AUC of 0.93 (95% confidence interval [CI], 0.90 to 0.96), with a sensitivity of 85% (95% CI, 79 to 90), a specificity of 90% (95% CI, 83 to 94), a positive predictive value of 91% (95% CI, 86 to 95), and a negative predictive value of 83% (95% CI, 75 to 89). CT angiography was similar to conventional angiography in its ability to identify patients who subsequently underwent revascularization: the AUC was 0.84 (95% CI, 0.79 to 0.88) for multidetector CT angiography and 0.82 (95% CI, 0.77 to 0.86) for conventional angiography. A per-vessel analysis of 866 vessels yielded an AUC of 0.91 (95% CI, 0.88 to 0.93). Disease severity ascertained by CT and conventional angiography was well correlated (r=0.81; 95% CI, 0.76 to 0.84). Two patients had important reactions to contrast medium after CT angiography. Conclusions: Multidetector CT angiography accurately identifies the presence and severity of obstructive coronary artery disease and subsequent revascularization in symptomatic patients. The negative and positive predictive values indicate that multidetector CT angiography cannot replace conventional coronary angiography at present. (ClinicalTrials.gov number, NCT00738218.).
Resumo:
Purpose: To evaluate the influence of cross-sectional arc calcification on the diagnostic accuracy of computed tomography (CT) angiography compared with conventional coronary angiography for the detection of obstructive coronary artery disease (CAD). Materials and Methods: Institutional Review Board approval and written informed consent were obtained from all centers and participants for this HIPAA-compliant study. Overall, 4511 segments from 371 symptomatic patients (279 men, 92 women; median age, 61 years [interquartile range, 53-67 years]) with clinical suspicion of CAD from the CORE-64 multi-center study were included in the analysis. Two independent blinded observers evaluated the percentage of diameter stenosis and the circumferential extent of calcium (arc calcium). The accuracy of quantitative multidetector CT angiography to depict substantial (>50%) stenoses was assessed by using quantitative coronary angiography (QCA). Cross-sectional arc calcium was rated on a segment level as follows: noncalcified or mild (<90 degrees), moderate (90 degrees-180 degrees), or severe (>180 degrees) calcification. Univariable and multivariable logistic regression, receiver operation characteristic curve, and clustering methods were used for statistical analyses. Results: A total of 1099 segments had mild calcification, 503 had moderate calcification, 338 had severe calcification, and 2571 segments were noncalcified. Calcified segments were highly associated (P < .001) with disagreement between CTA and QCA in multivariable analysis after controlling for sex, age, heart rate, and image quality. The prevalence of CAD was 5.4% in noncalcified segments, 15.0% in mildly calcified segments, 27.0% in moderately calcified segments, and 43.0% in severely calcified segments. A significant difference was found in area under the receiver operating characteristic curves (noncalcified: 0.86, mildly calcified: 0.85, moderately calcified: 0.82, severely calcified: 0.81; P < .05). Conclusion: In a symptomatic patient population, segment-based coronary artery calcification significantly decreased agreement between multidetector CT angiography and QCA to detect a coronary stenosis of at least 50%.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with osteoporosis and fragility fractures. The objectives of this study were to assess static and dynamic indices of cancellous and cortical bone structure in postmenopausal women with COPD. Twenty women with COPD who had not received chronic oral glucocorticoids underwent bone biopsies after double tetracycline labeling. Biopsies were analyzed by histomorphometry and mu CT and compared with age-matched controls. Distribution of the patients according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) was: Type I (15%), Type II (40%), Type III (30%), and Type IV (15%). Mean (+/-SD) cancellous bone volume (15.20 +/- 5.91 versus 21.34 +/- 5.53%, p = .01), trabecular number (1.31 +/- 0.26 versus 1.77 +/- 0.51/mm, p = .003), and trabecular thickness (141 +/- 23 versus 174 +/- 36 mu m, p = .006) were lower in patients than in controls. Connectivity density was lower in COPD (5.56 +/- 2.78 versus 7.94 +/- 3.08 mu m, p = .04), and correlated negatively with smoking (r = -0.67; p = .0005). Trabecular separation (785 +/- 183 versus 614 +/- 136 mu m, p = .01) and cortical porosity (4.11 +/- 1.02 versus 2.32 +/- 0.94 voids/mm(2); p < .0001) were higher in COPD while cortical width (458 +/- 214 versus 762 +/- 240 mu m; p < .0001) was lower. Dynamic parameters showed significantly lower mineral apposition rate in COPD (0.56 +/- 0.16 versus 0.66 +/- 0.12 mu m/day; p = .01). Patients with more severe disease, GOLD III and IV, presented lower bone formation rate than GOLDI and II (0.028 +/- 0.009 versus 0.016 +/- 0.011 mu m(3)/mu m(2)/day;p = 04). This is the first evaluation of bone microstructure and remodeling in COPD. The skeletal abnormalities seen in cancellous and cortical bone provide an explanation for the high prevalence of vertebral fractures in this disease. (C) 2010 American Society for Bone and Mineral Research.