975 resultados para MONOMER SEQUENCE DISTRIBUTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmethylated CpG dinucleotides in particular base contexts (CpG-S motifs) are relatively common in bacterial DNA but are rare in vertebrate DNA. B cells and monocytes have the ability to detect such CpG-S motifs that trigger innate immune defenses with production of Th1-like cytokines. Despite comparable levels of unmethylated CpG dinucleotides, DNA from serotype 12 adenovirus is immune-stimulatory, but serotype 2 is nonstimulatory and can even inhibit activation by bacterial DNA. In type 12 genomes, the distribution of CpG-flanking bases is similar to that predicted by chance. However, in type 2 adenoviral DNA the immune stimulatory CpG-S motifs are outnumbered by a 15- to 30-fold excess of CpG dinucleotides in clusters of direct repeats or with a C on the 5′ side or a G on the 3′ side. Synthetic oligodeoxynucleotides containing these putative neutralizing (CpG-N) motifs block immune activation by CpG-S motifs in vitro and in vivo. Eliminating 52 of the 134 CpG-N motifs present in a DNA vaccine markedly enhanced its Th1-like function in vivo, which was increased further by the addition of CpG-S motifs. Thus, depending on the CpG motif, prokaryotic DNA can be either immune-stimulatory or neutralizing. These results have important implications for understanding microbial pathogenesis and molecular evolution and for the clinical development of DNA vaccines and gene therapy vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging of H217O has a number of important applications. Mapping the distribution of H217O produced by oxidative metabolism of 17O-enriched oxygen gas may lead to a new method of metabolic functional imaging; regional cerebral blood flow also can be measured by measuring the H217O distribution after the injection of 17O-enriched physiological saline solution. Previous studies have proposed a method for indirect detection of 17O. The method is based on the shortening of the proton T2 in H217O solutions, caused by the residual 17O-1H scalar coupling and transferred to the bulk water via fast chemical exchange. It has been shown that the proton T2 of H217O solutions can be restored to that of H216O by irradiating the resonance frequency of the 17O nucleus. The indirect 17O image thus is obtained by taking the difference between two T2-weighted spin-echo images: one acquired after irradiation of the 17O resonance and one acquired without irradiation. It also has been established that, at relatively low concentrations of H217O, the indirect method yields an image that quantitatively reflects the H217O distribution in the sample. The method is referred to as PRIMO (proton imaging of oxygen). In this work, we show in vivo proton images of the H217O distribution in a rat brain after an i.v. injection of H217O-enriched physiological saline solution. Implementing the indirect detection method in an echo-planar imaging sequence enabled obtaining H217O images with good spatial and temporal resolution of few seconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitochondria isolated from transfected COS cells. Northern blot analyses of total RNAs from mouse tissues and Western blot analyses of mouse tissue homogenates showed differences in tissue-specific expression between CA VB and CA VA. CA VB was readily detected in most tissues, while CA VA expression was limited to liver, skeletal muscle, and kidney. The human orthologue of murine CA VB was recently reported also. Comparison of the CA domain sequence of human CA VB with that reported here shows that the CA domains of CA VB are much more highly conserved between mouse and human (95% identity) than the CA domains of mouse and human CA VAs (78% identity). Analysis of phylogenetic relationships between these and other available human and mouse CA isozyme sequences revealed that mammalian CA VB evolved much more slowly than CA VA, accepting amino acid substitutions at least 4.5 times more slowly since each evolved from its respective human–mouse ancestral gene around 90 million years ago. Both the differences in tissue distribution and the much greater evolutionary constraints on CA VB sequences suggest that CA VB and CA VA have evolved to assume different physiological roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we study the effect of point mutations in proteins on the redistributions of the conformational substates. We show that regardless of the location of a mutation in the protein structure and of its type, the observed movements of the backbone recur largely at the same positions in the structures. Despite the different interactions that are disrupted and formed by the residue substitution, not only are the conformations very similar, but the regions that move are also the same, regardless of their sequential or spatial distance from the mutation. This observation leads us to conclude that, apart from some extreme cases, the details of the interactions are not critically important in determining the protein conformation or in specifying which parts of the protein would be more prone to take on different local conformations in response to changes in the sequence. This finding further illustrates why proteins manifest a robustness toward many mutational events. This nonuniform distribution of the conformer population is consistently observed in a variety of protein structural types. Topology is critically important in determining folding pathways, kinetics, building block cutting, and anatomy trees. Here we show that topology is also very important in determining which regions of the protein structure will respond to sequence changes, regardless of the sequential or spatial location of the mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase, is dynamically retained within the endosomal compartment of fibroblasts. The characteristics of this dynamic retention are rapid internalization from the plasma membrane and slow recycling back to the cell surface. These specialized trafficking kinetics result in <15% of IRAP on the cell surface at steady state, compared with 35% of the transferrin receptor, another transmembrane protein that traffics between endosomes and the cell surface. Here we demonstrate that a 29-amino acid region of IRAP's cytoplasmic domain (residues 56–84) is necessary and sufficient to promote trafficking characteristic of IRAP. A di-leucine sequence and a cluster of acidic amino acids within this region are essential elements of the motif that slows IRAP recycling. Rapid internalization requires any two of three distinct motifs: M15,16, DED64–66, and LL76,77. The DED and LL sequences are part of the motif that regulates recycling, demonstrating that this motif is bifunctional. In this study we used horseradish peroxidase quenching of fluorescence to demonstrate that IRAP is dynamically retained within the transferrin receptor-containing general endosomal recycling compartment. Therefore, our data demonstrate that motifs similar to those that determine targeting among distinct membrane compartments can also regulate the rate of transport of proteins from endosomal compartments. We propose a model for dynamic retention in which IRAP is transported from the general endosomal recycling compartment in specialized, slowly budding recycling vesicles that are distinct from those that mediate rapid recycling back to the surface (e.g., transferrin receptor-containing transport vesicles). It is likely that the dynamic retention of IRAP is an example of a general mechanism for regulating the distribution of proteins between the surface and interior of cells.