948 resultados para MOLECULE SINGLE-CRYSTALS
Resumo:
We demonstrate a strikingly novel morphology of high-density polyethylene (HDPE) crystal obtained upon melt crystallization of spin-coated thin film. This crystal gives windmill-like morphology which contains a number of petals. A detailed inspection on this morphology reveals that each petal is actually composed of terrace-stacked PE lamellae, in which the polymer chains within crystallographic a-c planes adopt similar to 45 degrees tilting around b-axis. The surrounding domains associated with a petal of the windmill composed of twisted lamellar overgrowths with an identical orientation of their long axis, which is the crystallographic b-axis shared by the petal and its corresponding twisted lamellar overgrowths.
Resumo:
A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed.
Resumo:
Narrowed spectra at 452 nm from a thin platelike crystal of distyrylbenzene derivative, 2,5-diphenyl-1,4-distyrylbenzene with two trans double bonds (trans-DPDSB) grown by vapor deposition, are observed. The trans-DPDSB crystal is irradiated by the third harmonic (355 nm) of a Nd:YAG laser. The FWHM of the narrowed spectra can reach 6 nm for the crystal when the pumping energy is 400 mu J/pulse. The threshold value for an optically pumped laser is approximately 350 mu J/pulse.
Resumo:
A semiempirical method for the evaluation of the barycenter of energy of 4f(N-1)5d configurations is presented. The environmental factors affecting the barycenter are given to be the bond volume polarization, fractional covalence of the chemical bond between the central ion and the nearest anion, and presented charge of the nearest anion in the chemical bonds. The barycenter energies of 4f(N-1)5d configurations of Eu2+ and Ce3+ are calculated in various crystals, and the results are in good agreement with the experimental values. A relationship is found between the barycenter of energy of the 4f(N-1)5d configuration on Eu2+ method offers the advantage of applicability to a broad class of luminescence materials and initiates a link between macroscopic properties and microscopic structure.
Resumo:
A new orthorhombic phase of BaEu2Mn2O7 with the space group of Ccmm (no.63) was identified for single crystals after heat treatment and its Crystal Structure was determined by single crystal X-ray diffractometry. The volume Of the unit cell has twice the fundamental tetragonal cell and corner-shared MnO6 octahedra are slightly distorted and Mn-O-Mn angle between the neighboring octahedra tilts with an angle by around 3 degrees from b-axis. It is concluded from the results of the heat treatment of single crystals at various temperatures that this orthorhombic phase changes into a tetragonal One With superstructure (P4(2)/mnm) at 402 K and changes once more into the fundamental tetragonal phase (I4/mmm) above 552 K. The tetragonal phase with superstructure which has been expected to be an unstable one is stable between the two temperatures.
Resumo:
The different ions doped KMgF3 single crystals are prepared by the vertical Bridgman method. The near-infrared absorption spectra for different parts of all as-growth crystals indicate that there is the best transparency in middle part. The correlation between the vibronic frequencies of Eu2+ and the site displacement of Cu+ co-doped ions is firstly studied, which indicates that Cu+ ions replace the site of the Mg2+ ions. The co-doped Eu2+ counteracts the charge misfit causing by the replacement of Mg2+ with Cu+. The overlapping of the emission spectra of the Eu2+ and the excitation spectra of the Cu+ results in the energy transfer from Eu2+ to Cu+.
Resumo:
A main-chain nonracemic chiral liquid crystalline polymer was synthesized from (R)-(-)4'-{w-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1-decyloxyl-4-biphenylcarboxylic acid. This polymer contained 10 methylene units in each chemical repeating unit and was abbreviated PET(R*-10). On the basis of differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy experiments, chiral smectic C (S-C*) and chiral smectic A (S-A*) phases were identified. Both flat-elongated and helical lamellar crystal morphologies were observed in transmission electron microscopy. Of particular interest was the flat-elongated lamellar crystals were constructed via microtwinning of an orthorhombic cell with dimensions of a = 1.42 nm, b = 1.28 nm, and c = 3.04 nm. On the other hand, the helical lamellar crystals were exclusively left-handed, which was opposite to the right-handed helical crystals grown in PET(R*-9) and PET(R*-11) (having 9 and 11 methylene units, respectively). Note that these three polymers had identical right-handed chiral centers (R*-). Therefore, a single methylene unit difference on the polymer backbones on an atomic length scale substantially changed the chirality of the crystals in the micrometer length scale. Furthermore, aggregates of these helical crystals in PET(R*-10) did not generate banded spherulites in polarized light microscopy. Possible reasons for this change and loss of helical senses (handedness) on different length scales in chirality transferring processes were discussed.
Resumo:
Themorphologies and structures of single crystals of syndiotactic poly(propene-co-1-butene) (PPBU) with 1-butene contents of 2.6, 4.2, 9.9, 16.2, and 47.9 mol % are studied by transmission electron microscopy and electron diffraction. The electron diffraction results show that the 1-butene units are included in the crystalline phase of the sPP homopolymer. A small amount of 1-butene (<4.2 mol %) has no significant influence on the antichiral chain packing of sPP. With increasing content of 1-butene units, an increasing packing disorder is observed in the PPBU copolymers. The antichiral packing model is, however, always the predominant chain packing structure of the copolymers with the analyzed composition. Bright-field electron microscopy observation shows that the PPBU single crystals exhibit always regular rectangular or lathlike shapes with preferred growth direction along their crystallographic b-axes owing to their packing features. The incorporated 1-butene units influence the crystallization behavior of sPP distinctly. With the increase of the 1-butene units, the aspect ratio of the single crystals increases. Furthermore, the typical transverse microcracks and ripples of the highly stereoregular sPP are no more so prominent for the copolymers. The microcracks are occasionally observed in the single crystals of copolymers with low 1-butene content (less than or equal to4.2 mol %), while transverse ripples are only seen in the crystals of the copolymer having a 1-butene content of 9.9 mol %. With a further increase in the content of 1-butene units, the copolymers behave like the low stereoregular sPP, where neither cracks nor ripples are observed any more.
Resumo:
The structures of single crystals of syndiotactic poly(butene-1) in form I, produced by thin-film growth, are studied by transmission electron microscopy and electron diffraction. Bright-field electron microscopy observation shows that the single crystal exhibits a regular rectangular shape with the long axis along its crystallographic b-axis. Electron diffraction results indicate an isochiral C-centered packing of a-fold helical chains in an orthorhombic unit cell corresponding to the C222(1) space group, according to the model proposed in the literature. The differences with the polymorphic behavior of syndiotactic polypropylene concerning the formation and the stability of the isochiral mode of packing are outlined.
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Chemical bond parameters and the linear and nonlinear optical (NLO) properties of all constituent chemical bonds in Li1-xHxIOx [x (the amount of hydrogen) = 0.0, 0.28, and 0.34] (LHIO) type complex crystals have been investigated from the chemical bond viewpoint, At the same time, the relationship between the crystal structure and its optical properties has been obtained, based on the calculated results of LiIO3, Li0.72H0.28IO3, and Li0.66H0.34IO3. The nonlinear optical properties of LHIO single crystals are found to be particularly sensitive to the H+ impurity concentration. (C) 1998 Academic Press.
Resumo:
Cyclo(L-Glu-L-Glu) has been crystallised in two different polymorphic forms. Both polymorphs are monoclinic, but form 1 is in space group P21 and form 2 is in space group C2. Raman scattering and FT-IR spectroscopic studies have been conducted for the N,O-protonated and deuterated derivatives. Raman spectra of orientated single crystals, solid-state and aqueous solution samples have also been recorded. The different hydrogen-bonding patterns for the two polymorphs have the greatest effect on vibrational modes with N&bond;H and C&dbond;O stretching character. DFT (B3-LYP/cc-pVDZ) calculations of the isolated cyclo(L-Glu-L-Glu) molecule predict that the minimum energy structure, assuming C2 symmetry, has a boat conformation for the diketopiperazine ring with the two L-Glu side chains being folded above the ring. The calculated geometry is in good agreement with the X-ray crystallographic structures for both polymorphs. Normal coordinate analysis has facilitated the band assignments for the experimental vibrational spectra. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
The origin of the unusual 90 degrees ferroelectric/ferroelastic domains, consistently observed in recent studies on mesoscale and nanoscale free-standing single crystals of BaTiO3 [Schilling , Phys. Rev. B 74, 024115 (2006); Schilling , Nano Lett. 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface-tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.
Resumo:
The manner in which 90? ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 ? C below the Curie temperature (TC ), whereupon domains coarsened dramatically. This behavior was successfully rationalized by considering the temperature dependence of the parameters associated with standard models of ferroelastic domain formation. However, while successful in describing the expected radical increase in equilibrium period with temperature, the model did not predict the unusual mechanism by which domain coarsening occurred; this was not continuous at a local level but instead involved discrete domain annihilation events. Subsequent insights from a combination of free energy analysis for the system and further experimental data from an analogous situation, in which domain period increases with increasing crystal thickness, suggested that domain annihilation is inevitable whenever a component of the relevant gradient that affects domain period is orientated parallel to the domain walls. Consistent with this thesis, we note that, for the observations presented herein, the thermal gradient possessed a significant component parallel to the domain walls. We suggest that domain annihilation is a general feature of domain structures in gradient fields.