998 resultados para MEDITERRANEAN BASIN
Resumo:
The growing need to assess the environmental status of the Mediterranean coastal marine habitats and the large availability of data collected by Reef Check Italia onlus (RCI) volunteers suggest the possibility to develop innovative and reliable indices that may support decision makers in applying conservation strategies. The aims of this study were to check the reliability of data collected by RCI volunteers, analyse the spatial and temporal distribution of RCI available data, resume the knowledge on the biology and ecology of the monitored species, and develop innovative indices to asses the ecological quality of Mediterranean subtidal rocky shores and coralligenous habitats. Subtidal rocky shores and coralligenous were chosen because these are the habitats more attractive for divers; therefore mlst data are referring to them, moreover subtidal rocky bottom are strongly affected by coastal urbanisation, land use, fishing and tourist activities, that increase pollution, turbidity and sedimentation. Non-indigenous species (NIS) have been recognized as a major threat to the integrity of Mediterranean native communities because of their proliferation, spread and impact on resident communities. Monitoring of NIS’ spreading dynamics at the basin spatial scale is difficult but urgent. According to a field test, the training provided by RCI appears adequate to obtain reliable data by volunteers. Based on data collected by RCI volunteers, three main categories of indices were developed: indices based on species diversity, indices on the occurrence non-indigenous species, and indices on species sensitive toward physical, chemical and biological disturbances. As case studies, indices were applied to stretches of coastline defined according to management criteria (province territories and marine protected areas). The assessments of ecological quality in the Tavolara Marine Protected Area using the species sensitivities index were consisten with those previously obtained with traditional methods.
Resumo:
The Mediterranean Region has many morphologic, geographical, historical, and societal characteristics, which make its climate scientifically interesting. The concept of Mediterranean climate is characterized by mild wet winters and warm to hot, dry summers and occur on the west side of continents between about 30° and 40° latitude. However, the presence of a relatively large mass of water is unique to the actual Mediterranean region. The Mediterranean Sea is a marginal and semi-enclosed sea; it is located on the western side of a large continental area and is surrounded by Europe to the North, Africa to the South, and Asia to the East. The chapter discusses that the climate of the Mediterranean region is to a large extent forced by planetary scale patterns. The time and space behavior of the regional features associated with such large-scale forcing is complex. Orography and land–sea distribution play an important role establishing the climate at basin scale and its teleconnections with global patterns. Different levels of services of readiness to emergencies, technological, and economic resources are likely to result in very different adaptation capabilities to environmental changes and new problems. The different economic situations and demographic trends are likely to produce contrasts and conflicts in a condition of limited available resources and environmental stress.
Resumo:
A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last GlacialeInterglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and d18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other Mediterranean shallow-shelf settings.