969 resultados para MALE FISCHER-344 RATS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous positive airway pressure, aimed at preventing pulmonary atelectasis, has been used for decades to reduce lung injury in critically ill patients. In neonatal practice, it is increasingly used worldwide as a primary form of respiratory support due to its low cost and because it reduces the need for endotracheal intubation and conventional mechanical ventilation. We studied the anesthetized in vivo rat and determined the optimal circuit design for delivery of continuous positive airway pressure. We investigated the effects of continuous positive airway pressure following lipopolysaccharide administration in the anesthetized rat. Whereas neither continuous positive airway pressure nor lipopolysaccharide alone caused lung injury, continuous positive airway pressure applied following intravenous lipopolysaccharide resulted in increased microvascular permeability, elevated cytokine protein and mRNA production, and impaired static compliance. A dose-response relationship was demonstrated whereby higher levels of continuous positive airway pressure (up to 6 cmH(2)O) caused greater lung injury. Lung injury was attenuated by pretreatment with dexamethasone. These data demonstrate that despite optimal circuit design, continuous positive airway pressure causes significant lung injury (proportional to the airway pressure) in the setting of circulating lipopolysaccharide. Although we would currently avoid direct extrapolation of these findings to clinical practice, we believe that in the context of increasing clinical use, these data are grounds for concern and warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material and methods. Methylone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (15 and 30 mg/kg). Plasma concentrations and metabolites were characterized by LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results. Oral administration of methylone induced a dose-dependent increase in locomotor activity in rats. The plasma concentrations after i.v. administration were described by a two-compartment model with distribution and terminal elimination phases of α = 1.95 h− 1 and β = 0.72 h− 1. For oral administration, peak methylone concentrations were achieved between 0.5 and 1 h and fitted to a flip-flop model. Absolute bioavailability was about 80% and the percentage of methylone protein binding was of 30%. A relationship between methylone brain levels and free plasma concentration yielded a ratio of 1.42 ± 0.06, indicating access to the central nervous system. We have identified four Phase I metabolites after oral administration. The major metabolic routes are N-demethylation, aliphatic hydroxylation and O-methylation of a demethylenate intermediate. Discussion. Pharmacokinetic and pharmacodynamic analysis of methylone showed a correlation between plasma concentrations and enhancement of the locomotor activity. A contribution of metabolites in the activity of methylone after oral administration is suggested. Present results will be helpful to understand the time course of the effects of this drug of abuse in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material and methods. Methylone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (15 and 30 mg/kg). Plasma concentrations and metabolites were characterized by LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results. Oral administration of methylone induced a dose-dependent increase in locomotor activity in rats. The plasma concentrations after i.v. administration were described by a two-compartment model with distribution and terminal elimination phases of α = 1.95 h− 1 and β = 0.72 h− 1. For oral administration, peak methylone concentrations were achieved between 0.5 and 1 h and fitted to a flip-flop model. Absolute bioavailability was about 80% and the percentage of methylone protein binding was of 30%. A relationship between methylone brain levels and free plasma concentration yielded a ratio of 1.42 ± 0.06, indicating access to the central nervous system. We have identified four Phase I metabolites after oral administration. The major metabolic routes are N-demethylation, aliphatic hydroxylation and O-methylation of a demethylenate intermediate. Discussion. Pharmacokinetic and pharmacodynamic analysis of methylone showed a correlation between plasma concentrations and enhancement of the locomotor activity. A contribution of metabolites in the activity of methylone after oral administration is suggested. Present results will be helpful to understand the time course of the effects of this drug of abuse in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextrancharcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cirurgia de traquéia enfrenta dificuldades em acompanhar os recentes avanços da terapêutica cirúrgica. Os resultados cirúrgicos são baseados em trabalhos clássicos desenvolvidos há mais de dez anos. Características específicas de vascularização e de regeneração estão entre os problemas que os cirurgiões enfrentam no tratamento das lesões adquiridas ou congênitas da traquéia. As próteses e o transplante ainda não fazem parte do arsenal terapêutico. Com o objetivo específico de determinar o valor da gordura na viabilidade de aloenxertos traqueais, os autores utilizaram ratos Fischer 344 para estudar a regeneração e a viabilidade de aloenxertos, associados à imunossupressão. Um doador possibilitou o implante de um fragmento traqueal em gordura do subcutâneo de dez ratos e de um fragmento no omento. Estes fragmentos de traquéia foram estudados histologicamente visando determinar a viabilidade. Os resultados demonstraram que a gordura extraperitonial, no rato, não serve para manter a viabilidade de aloenxerto, mesmo utilizando imunossupressão (p<0,05), quando comparada à gordura intraperitoneal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the metabolism of diglycine and triglycine in the isolated non-filtering rat kidney. Kidneys from adult male Wistar Kyoto rats weighing 250-350 g were perfused with Krebs-Henseleit solution containing either 1 mM diglycine or triglycine. The analysis of the peptide residues and their components was performed using an amino acid microanalyzer utilizing ion exchange chromatography. Diglycine was degraded to a final concentration of 0.09 mM after 120 min (91%); this degradation occurred predominantly during the first hour, with a 56% reduction of the initial concentration. The metabolism of triglycine occurred similarly, with a final concentration of 0.18 mM (82%); during the first hour there was a 67% reduction of the initial concentration of the tripeptide. Both peptides produced glycine in increasing concentrations, but there was a slightly lower recovery of glycine, suggesting its utilization by the kidney as fuel. The hydrolysis of triglycine also produced diglycine, which was also hydrolyzed to glycine. The results of the present study show the existence of functional endothelial or contraluminal membrane peptidases which may be important during parenteral nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/l) for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean ± SEM, N = 12) for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 ± 0.04, 0.10 ± 0.05, 0.15 ± 0.08 and 0.49 ± 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47) = 9.521, P<0.001) and the Tukey multiple comparison test (P<0.05) showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7) receiving sucrose exhibited an analgesia index of 0.20 ± 0.10 while rats receiving only sucrose (N = 7) had an index of 0.68 ± 0.11 (t = 0.254, 10 degrees of freedom, P<0.03). This result indicates that the analgesic effect of sucrose depends on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ß-Myrcene (MYR) is a monoterpene found in the oils of a variety of aromatic plants including lemongrass, verbena, hop, bay, and others. MYR and essential oils containing this terpenoid compound are used in cosmetics, household products, and as flavoring food additives. This study was undertaken to investigate the effects of MYR on fertility and general reproductive performance in the rat. MYR (0, 100, 300 and 500 mg/kg) in peanut oil was given by gavage to male Wistar rats (15 per dose group) for 91 days prior to mating and during the mating period, as well as to females (45 per dose group) continuously for 21 days before mating, during mating and pregnancy, and throughout the period of lactation up to postnatal day 21. On day 21 of pregnancy one-third of the females of each group were submitted to cesarean section. Resorption, implantation, as well as dead and live fetuses were counted. All fetuses were examined for external malformations, weighed, and cleared and stained with Alizarin Red S for skeleton evaluation. The remaining dams were allowed to give birth to their offspring. The progeny was examined at birth and subsequently up to postnatal day 21. Mortality, weight gain and physical signs of postnatal development were evaluated. Except for an increase in liver and kidney weights, no other sign of toxicity was noted in male and female rats exposed to MYR. MYR did not affect the mating index (proportion of females impregnated by males) or the pregnancy index (ratio of pregnant to sperm-positive females). No sign of maternal toxicity and no increase in externally visible malformations were observed at any dose level. Only at the highest dose tested (500 mg/kg) did MYR induce an increase in the resorption rate and a higher frequency of fetal skeleton anomalies. No adverse effect of MYR on postnatal weight gain was noted but days of appearance of primary coat, incisor eruption and eye opening were slightly delayed in the exposed offspring. On the basis of the data presented in this paper the no-observed-adverse-effect level (NOAEL) for toxic effects on fertility and general reproductive performance can be set at 300 mg of ß-myrcene/kg body weight by the oral route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of a1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (»75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2a (PGF2a; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2a from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was designed to evaluate the differences in the coronary vasodilator actions of serotonin (5-HT) in isolated heart obtained from naive or castrated male and female rats that were treated with either estrogen or testosterone. Hearts from 12 groups of rats were used: male and female naive animals, castrated, castrated and treated with 17ß-estradiol (0.5 µg kg-1 day-1) for 7 or 30 days, and castrated and treated with testosterone (0.5 mg kg-1 day-1) for 7 or 30 days. After treatment, the vascular reactivity of the coronary bed was evaluated. Baseline coronary perfusion pressure (CPP) was determined and dose-response curves to 5-HT were generated. Baseline CPP differed between male (70 ± 6 mmHg, N = 10) and female (115 ± 6 mmHg, N = 12) naive rats. Maximal 5-HT-induced coronary vasodilation was higher (P<0.05) in naive female than in naive male rats. In both sexes, 5-HT produced endothelium-dependent coronary vasodilation. After castration, there was no significant difference in baseline CPP between hearts obtained from male and female rats (75 ± 7 mmHg, N = 8, and 83 ± 5 mmHg, N = 8, respectively). Castration reduced the 5-HT-induced maximal vasodilation in female and male rats (P<0.05). Estrogen treatment of castrated female rats restored (P<0.05) the vascular reactivity. In castrated male rats, 30 days of estrogen treatment increased (P<0.05) the responsiveness to 5-HT. The endothelium-dependent coronary vasodilator actions of 5-HT are greater in female rats and are modulated by estrogen. A knowledge of the mechanism of action of estrogen on coronary arteries could aid in the development of new therapeutic strategies and potentially decrease the incidence of cardiovascular disease in both sexes.