980 resultados para Low-emission windows


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ECL of several amines containing different numbers of hydroxyl and amino groups was investigated. N-butyldiethanolamine is found to be more effective than 2-(dibutylamino)ethanol at gold and platinum electrodes, and is the most effective coreactant reported until now. Surprisingly, ECL intensities of monoamines, such as 2-(dibutylamino)ethanol and N-butyldiethanolamine, are much stronger than that of diamines including N,N,N',N'-tetrakis-(2-hydroxyethyl)-ethylenediamine and N,N,N',N'-tetrakis-(2-hydroxypropyl)ethlenediamine. The striking contrast between ECL signals of the investigated monoamines and diamines may result from more significant side reactions of diamines, such as the intramolecular side reactions between oxidative amine cation radicals and reductive amine free radicals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the pure LaInO3 phase can also be obtained at 700 degrees C. FE-SEM images indicate that the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors are composed of aggregated spherical particles with sizes around 80-120 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors show the characteristic emissions of Sm3+ ((4)G(5/2)-H-6(5/2,7/2,9/2) transitions, yellow), Pr3+ (P-3(0)-H-3(4), P-3(1)-H-3(5), D-1(2)-H-3(4) and P-3(0)-F-3(2) transitions, blue-green) and Tb3+ (D-5(4)-F-7(6.5,4.3) transitions, green) respectively. The corresponding luminescence mechanisms are discussed. These phosphors have potential applications in field emission displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocyrstalline LaAlO3:Sm3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C, and pure LaAlO3 phase can be obtained at 700 degrees C. FE-SEM images indicate that the Sm3+-doped LaAlO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of UV light (245 nm) and low-voltage electron beams (1-3 kV), the Sm3+-doped LaAlO3 phosphors show the characteristic emissions of the Sm3+ ((4)G(5/2)-H-6(5/2), H-6(7/2), H-6(9/2) transitions) with a yellow color. The CL intensity (brightness) of the Sm3+-doped LaAlO3 phosphor is higher than that of the commercial product [Zn(Cd)S:Ag+] (yellow) to some extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline Tm3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process [M. P. Pechini, U.S. Patent No. 3,330,697 (11 July 1967)]. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. Under the excitation of ultraviolet light and low voltage electron beams (0.5-3 kV), the Tm3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tm3+ (D-1(2), (1)G(4)-F-3(4), and H-3(6) transitions), respectively. The blue CL of the Tm3+-doped LaGaO3 phosphors, with a dominant wavelength of 458 nm, had better Commission International I'Eclairage chromaticity coordinates (0.1552, 0.0630) and higher emission intensity than the commercial product (Y2SiO5:Ce3+).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CaIn2O4:xEu(3+) (x=0.5%,1.0%,1.5%) phosphors were prepared by the Pechini sol-gel process [U.S. Patent No. 3,330,697 (1967)] and characterized by x-ray diffraction and photoluminescence and cathodoluminescence spectra as well as lifetimes. Under the excitation of 397 nm ultraviolet light and low voltage electron beams, these phosphors show the emission lines of Eu3+ corresponding to D-5(0,1,2,3)-F-7(J) (J=0,1,2,3,4) transitions from 400 to 700 nm (whole visible spectral region) with comparable intensity, resulting in a white light emission with a quantum efficiency near 10%. The luminescence mechanism for Eu3+ in CaIn2O4 has been elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline Y3Al5O12: Ce3+/Tb3+ ( average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12: Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores ( average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1-3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/ Tb3+ particles show strong yellow-green and green emission corresponding to the 5d-4f emission of Ce3+ and D-5(4)-F-7(J) ( J = 6, 5, 4, 3) emission of Tb3+, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caln(2)O(4):Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescencc (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C 3-1 and pure CaIn2O4 phase can be obtained after annealing at 900 degrees C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400nm. Under the excitation of ultraviolet light and low electron beams (1-5kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ ((F9/2-H15/2)-F-4-H-6 and (F9/2-H13/2)-F-4-H-6 transitions, blue-white), Pr3+ ((P0-H4)-P-3-H-3, (D2-H4)-D-1-H-3 and (P1-H5)-P-3-H-3 transitions, green) and Tb3+ ((D4-F6,5,4,3)-D-5-F-7 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+ ,Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue emitting GdNbO4: Bi3+ powder phosphors for field emission displays were prepared by a solid state reaction. Both photoluminescence and cathodoluminescence properties of the materials were investigated. GdNbO4 itself shows only a very weak luminescence in the blue spectral region. By doping Bi3+ in GdNbO4, the luminescence intensity was improved greatly. The emission spectrum of the GdNbO4: Bi3+ consists of a broad band with maximum at 445 nm (lifetime = 0.74 mu s; CIE chromaticity coordinates: x = 0.1519 and y = 0. 1196) for both UV and low voltage (1-7 kV) cathode ray excitation. In GdNbO4:Bi3+ phosphors, the energy transfer from NbO43- to activator Bi3+ occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A well-known red fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB) was codoped with an electron transport organic molecule tris(8-hydroxyquinohne) aluminum (Alq3) in a host matrix of polystyrene (PS), and the amplified spontaneous emission (ASE) was studied by optically pumping. It was found that the ASE performance was significantly improved by the introduction of Alq3. The Alq3:DCJTB:PS blending thin films showed a low threshold (2.4 mu J/pulse) and a high net gain coefficient (109.95 cm(-1)) compared with the pure DCJTB:PS system (threshold of 15.2 mu J/pulse and gain of 35.94 cm(-1)). The improvement of the ASE performance was considered to be attributable to the effective Foster energy transfer from Alq(3) to DCJTB. Our results demonstrate that the Alq(3):DCJTB could be a promising candidate as gain medium for red organic diode lasers.