950 resultados para Logistic maps
Resumo:
Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.
Resumo:
In this paper we seek to contribute to recent efforts to develop and implement multi-dimensional approaches to social exclusion by applying self-organising maps (SOMs) to a set of material deprivation indicators from the Irish component of EU-SILC. The first stage of our analysis involves the identification of sixteen clusters that confirm the multi-dimensional nature of deprivation in contemporary Ireland and the limitations of focusing solely on income. In going beyond this mapping stage, we consider both patterns of socio-economic differentiation in relation to cluster membership and the extent to which such membership contributes to our understanding of economic stress. Our analysis makes clear the continuing importance of traditional forms of stratification relating to factors such as income, social class and housing tenure in accounting for patterns of multiple deprivation. However, it also confirms the role of acute life events and life cycle and location influences. Most importantly, it demonstrates that conclusions relating to the relative impact of different kinds of socio-economic influences are highly dependent on the form of deprivation being considered. Our analysis suggests that debates relating to the extent to which poverty and social exclusion have become individualized should take particular care to distinguish between different kinds of outcomes. Further analysis demonstrates that the SOM approach is considerably more successful than a comparable latent class analysis in identifying those exposed to subjective economic stress. (C) 2010 International Sociological Association Research Committee 28 on Social Stratification and Mobility. Published by Elsevier Ltd. All rights reserved.
Resumo:
The development of conceptual frameworks for the analysis of social exclusion has somewhat out-stripped related methodological developments. This paper seeks to contribute to filling this gap through the application of self-organising maps (SOMs) to the analysis of a detailed set of material deprivation indicators relating to the Irish case. The SOM approach allows us to offer a differentiated and interpretable picture of the structure of multiple deprivation in contemporary Ireland. Employing this approach, we identify 16 clusters characterised by distinct profiles across 42 deprivation indicators. Exploratory analyses demonstrate that, controlling for equivalised household income, SOM cluster membership adds substantially to our ability to predict subjective economic stress. Moreover, in comparison with an analogous latent class approach, the SOM analysis offers considerable additional discriminatory power in relation to individuals' experience of their economic circumstances. The results suggest that the SOM approach could prove a valuable addition to a 'methodological platform' for analysing the shape and form of social exclusion. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
13.Vidovic M., Miljus M., Vlajic J., (2002), "Risk minimization in logistic processes with oil products", Proceedings of the 6th International Conference on Traffic Science, ICTS 2002, Portorož, Slovenia, pp. 568-577;
Resumo:
Conventional practice in Regional Geochemistry includes as a final step of any geochemical campaign the generation of a series of maps, to show the spatial distribution of each of the components considered. Such maps, though necessary, do not comply with the compositional, relative nature of the data, which unfortunately make any conclusion based on them sensitive
to spurious correlation problems. This is one of the reasons why these maps are never interpreted isolated. This contribution aims at gathering a series of statistical methods to produce individual maps of multiplicative combinations of components (logcontrasts), much in the flavor of equilibrium constants, which are designed on purpose to capture certain aspects of the data.
We distinguish between supervised and unsupervised methods, where the first require an external, non-compositional variable (besides the compositional geochemical information) available in an analogous training set. This external variable can be a quantity (soil density, collocated magnetics, collocated ratio of Th/U spectral gamma counts, proportion of clay particle fraction, etc) or a category (rock type, land use type, etc). In the supervised methods, a regression-like model between the external variable and the geochemical composition is derived in the training set, and then this model is mapped on the whole region. This case is illustrated with the Tellus dataset, covering Northern Ireland at a density of 1 soil sample per 2 square km, where we map the presence of blanket peat and the underlying geology. The unsupervised methods considered include principal components and principal balances
(Pawlowsky-Glahn et al., CoDaWork2013), i.e. logcontrasts of the data that are devised to capture very large variability or else be quasi-constant. Using the Tellus dataset again, it is found that geological features are highlighted by the quasi-constant ratios Hf/Nb and their ratio against SiO2; Rb/K2O and Zr/Na2O and the balance between these two groups of two variables; the balance of Al2O3 and TiO2 vs. MgO; or the balance of Cr, Ni and Co vs. V and Fe2O3. The largest variability appears to be related to the presence/absence of peat.
Resumo:
Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study showsthat ifwe do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.
Resumo:
Regional knowledge map is a tool recently demanded by some actors in an institutional level to help regional policy and innovation in a territory. Besides, knowledge maps facilitate the interaction between the actors of a territory and the collective learning. This paper reports the work in progress of a research project which objective is to define a methodology to efficiently design territorial knowledge maps, by extracting information of big volumes of data contained in diverse sources of information related to a region. Knowledge maps facilitate management of the intellectual capital in organisations. This paper investigates the value to apply this tool to a territorial region to manage the structures, infrastructures and the resources to enable regional innovation and regional development. Their design involves the identification of information sources that are required to find which knowledge is located in a territory, which actors are involved in innovation, and which is the context to develop this innovation (structures, infrastructures, resources and social capital). This paper summarizes the theoretical background and framework for the design of a methodology for the construction of knowledge maps, and gives an overview of the main challenges for the design of regional knowledge maps.