966 resultados para Liver and ethanol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is characterized by impaired beta cell function and insulin resistance. T2D susceptibility genes identified by Genome-wide association studies (GWAS) are likely to have roles in both impaired insulin secretion from the beta cell as well as insulin resistance. The aim of this study was to use gene expression profiling to assess the effect of the diabetic milieu on the expression of genes involved in both insulin secretion and insulin resistance. We measured the expression of 43 T2D susceptibility genes in the islets, adipose and liver of leptin-deficient Ob/Ob mice compared with Ob/+ littermates. The same panel of genes were also profiled in cultured rodent adipocytes, hepatocytes and beta cells in response to high glucose conditions, to distinguish expression effects due to elevated glycemia from those on the causal pathway to diabetes or induced by other factors in the diabetic microenviroment. We found widespread deregulation of these genes in tissues from Ob/Ob mice, with differential regulation of 23 genes in adipose, 18 genes in liver and one gene (Tcf7l2) in islets of diabetic animals (Ob/Ob) compared to control (Ob/+) animals. However, these expression changes were in most cases not noted in glucose-treated adipocyte, hepatocyte or beta cell lines, indicating that they may not be an effect of hyperglycemia alone. This study indicates that expression changes are apparent with diabetes in both the insulin producing beta cells, but also in peripheral tissues involved in insulin resistance. This suggests that incidence or progression of diabetic phenotypes in a mouse model of diabetes is driven by both secretory and peripheral defects. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on express ion/activity of the main DDS phase-II- metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxiclation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Synchronous occurrence of pulmonary and hepatic hydatid cysts is an uncommon manifestation of hydatid disease that is observed in less than 10% of cases. We report a rare case of bilateral lung (with bronchial fistula) and liver cyst, surgically treated after medical therapy. Case report. A 44-year-old housewife reporting fever, anorexia and fatigue that had been present for the previous 20 days received diagnosis of bilateral lung and liver hydatid cyst. Because of the dimensions of right lung cyst and the successive bronchial fistolization, we proceeded to three-stage operation of two thoracotomies and a laparotomy to control the risk of further rupture. After surgery, all post-operatives were uneventful. Complete resolution of the therapy with no evidence of recurrence at 2 years follow-up. Conclusion. We emphasize the need to search for additional hydatids in patients who present with either pulmonary or liver hydatids. The simultaneous treatment of liver and lung should be reserved to patients in good conditions; in all other cases, especially when one cyst is more symptomatic than the others or has more risk of rupture, we prefer to treat single cyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the effects of oral glutamate intake on acute motor effects and chronic intake of ethanol in rodents. Methods: The acute effects of ethanol on motor function were studied in ICR mice by giving 2 or 6 g/kg of ethanol 2 h after distilled water or 2.5 g/kg glutamate per os. Thirty minutes after ethanol treatment, behavioral assays, including rotarod tests and foot print analysis were monitored. In chronic ethanol treatment, male Wistar rats were trained to consume ethanol-sucrose solution during a 2-h period daily, starting with 2 % ethanol/10 % sucrose and gradually increasing to 10 % ethanol/5 % sucrose solution over 56 days. After training session, the drug treatment phase was done for 10 days. The animals were force-fed 50 mg/kg/day topiramate or 2.5 g/kg/day glutamate 2 h before ethanol treatment sessions. Each day, ethanol intake, water intake, food intake and body weight were recorded. Results: Mice that received 2 or 6 g/kg of ethanol orally, showed a significant reduction in time on the rod in the rotarod test and a significant increase in both forelimb and hindlimb stride lengths when compared to control. Oral treatment with 2.5 g/kg of glutamate reversed the acute motor effects of ethanol. In chronic ethanol treatment, the intake of 10 % ethanol/5 % sucrose, accessible for 2 h, was significantly decreased in rats treated with either topiramate or glutamate. Conclusion: These results provide evidence that oral glutamate administration help to reduce the acute motor effects of ethanol in mice and ethanol intake in the chronic ethanol drinking rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable c-interferoninducible catalytic b-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit speci®c antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core a-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some signi®cant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immuno¯uorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following cinterferon treatment of cultured cells but c-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcohol use disorders (AUDs) are a major public health problem, and the few treatment options available to those seeking treatment offer only modest success rates. There remains a need to identify novel targets for the treatment of AUDs. The neuronal nicotinic acetylcholine receptors (nAChRs) represent a potential therapeutic target in the brain, as recent human genetic studies have implicated gene variants in the α5 nAChR subunit as high risk factors for developing alcohol dependence. Here, we evaluate the role of 5* nAChR for ethanol-mediated behaviors using α5+/+ and α5-/- mice. We characterized the effect of hypnotic doses of ethanol and investigated drinking behavior using an adapted Drinking-in-the Dark (DID) paradigm that has been shown to induce high ethanol consumption in mice. We found the α5 subunit to be critical in mediating the sedative effects of ethanol. The α5-/- mice showed slower recovery from ethanol-induced sleep, as measured by loss of righting reflex. Additionally the α5-/- mice showed enhanced impairment to ethanol-induced ataxia. We found the initial sensitivity to ethanol and ethanol metabolism to be similar in both α5+/+ and α5-/- mice. Hence the enhanced sedation is likely due to a difference in the acute tolerance of ethanol in mice deficient of the α5 subunit. However the α5 subunit did not play a role in ethanol consumption for ethanol concentrations ranging from 5% to 30% in the DID paradigm. Additionally, varenicline (Chantix®) was effective in reducing ethanol intake in α5-/- mice. Together, our data suggest that the α5 nAChR subunit is important for the sedative hypnotic doses of ethanol but does not play a role in ethanol consumption. Varenicline can be a treatment option even when there is loss of function of the α5 nAChR subunit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Australian sugar industry processes approximately 35 million tonnes of sugarcane per year from 400 000 hectares of land. Sugar remains the principal revenue stream from sugarcane in Australia with less than 60 ML/y of fuel ethanol produced from final molasses at present. Modelling has been undertaken to estimate the potential ethanol production from the Australian sugar industry for integrated facilities producing both sugar and ethanol from the entire sugarcane resource. Although research aimed at developing commercial processes is ongoing, the use of a proportion of the bagasse and trash for ethanol production, in addition to juice and molasses fermentation, would allow significant increases in the scale of ethanol production from sugarcane in Australia, increasing total industry revenues while maintaining energy self sufficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To determine the impact of a free-choice diet on nutritional intake and body condition of feral horses. Animals: Cadavers of 41 feral horses from 5 Australian locations. Procedures: Body condition score (BCS) was determined (scale of 1 to 9), and the stomach was removed from horses during postmortem examination. Stomach contents were analyzed for nutritional variables and macroelement and microelement concentrations. Data were compared among the locations and also compared with recommended daily intakes for horses. Results: Mean BCS varied by location; all horses were judged to be moderately thin. The BCS for males was 1 to 3 points higher than that of females. Amount of protein in the stomach contents varied from 4.3% to 14.9% and was significantly associated with BCS. Amounts of water-soluble carbohydrate and ethanol-soluble carbohydrate in stomach contents of feral horses from all 5 locations were higher than those expected for horses eating high-quality forage. Some macroelement and microelement concentrations were grossly excessive, whereas others were grossly deficient. There was no evidence of ill health among the horses. Conclusions and Clinical Relevance: Results suggested that the diet for several populations of feral horses in Australia appeared less than optimal. However, neither low BCS nor trace mineral deficiency appeared to affect survival of the horses. Additional studies on food sources in these regions, including analysis of water-soluble carbohydrate, ethanol-soluble carbohydrate, and mineral concentrations, are warranted to determine the provenance of such rich sources of nutrients. Determination of the optimal diet for horses may need revision.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene-nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water-based dispersions of single-layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p-type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n-type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene-based materials.